Spaces:
Running
Running
File size: 10,564 Bytes
ec96972 eb87b3b ec96972 e15840d ec96972 0d10b91 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 6bc8549 ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b 6bc8549 ec96972 eb87b3b ec96972 eb87b3b ec96972 6bc8549 ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b ec96972 eb87b3b 6bc8549 ec96972 eb87b3b ec96972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import warnings
import logging
import time
from datetime import datetime
# Set up cache directory for HuggingFace models
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
# Suppress specific TensorFlow deprecation warnings
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
logging.getLogger('tensorflow').setLevel(logging.ERROR)
from fastapi import FastAPI, Request, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
from embedder import build_faiss_index, preload_model
from retriever import retrieve_chunks
from llm import query_gemini
import uvicorn
app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Preload the model at startup
@app.on_event("startup")
async def startup_event():
print("Starting up HackRx Insurance Policy Assistant...")
print("Preloading sentence transformer model...")
preload_model()
print("Model preloading completed. API is ready to serve requests!")
@app.get("/")
async def root():
return {"message": "HackRx Insurance Policy Assistant API is running!"}
@app.get("/health")
async def health_check():
return {"status": "healthy", "message": "API is ready to process requests"}
class QueryRequest(BaseModel):
documents: str
questions: list[str]
class LocalQueryRequest(BaseModel):
document_path: str
questions: list[str]
def verify_token(authorization: str = Header(None)):
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid authorization header")
token = authorization.replace("Bearer ", "")
# For demo purposes, accept any token. In production, validate against a database
if not token:
raise HTTPException(status_code=401, detail="Invalid token")
return token
@app.post("/api/v1/hackrx/run")
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
start_time = time.time()
timing_data = {}
try:
print(f"\n=== INPUT JSON ===")
print(f"Documents: {request.documents}")
print(f"Questions: {request.questions}")
print(f"==================\n")
print(f"Processing {len(request.questions)} questions...")
# Time PDF parsing
pdf_start = time.time()
text_chunks = parse_pdf_from_url(request.documents)
pdf_time = time.time() - pdf_start
timing_data['pdf_parsing'] = round(pdf_time, 2)
print(f"Extracted {len(text_chunks)} text chunks from PDF")
# Time FAISS index building
index_start = time.time()
index, texts = build_faiss_index(text_chunks)
index_time = time.time() - index_start
timing_data['faiss_index_building'] = round(index_time, 2)
# Time chunk retrieval for all questions
retrieval_start = time.time()
all_chunks = set()
for i, question in enumerate(request.questions):
question_start = time.time()
top_chunks = retrieve_chunks(index, texts, question)
question_time = time.time() - question_start
all_chunks.update(top_chunks)
retrieval_time = time.time() - retrieval_start
timing_data['chunk_retrieval'] = round(retrieval_time, 2)
print(f"Retrieved {len(all_chunks)} unique chunks")
# Time LLM processing
llm_start = time.time()
print(f"Processing all {len(request.questions)} questions in batch...")
response = query_gemini(request.questions, list(all_chunks))
llm_time = time.time() - llm_start
timing_data['llm_processing'] = round(llm_time, 2)
# Time response processing
response_start = time.time()
# Extract answers from the JSON response
if isinstance(response, dict) and "answers" in response:
answers = response["answers"]
# Ensure we have the right number of answers
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
else:
# Fallback if response is not in expected format
answers = [response] if isinstance(response, str) else []
# Ensure we have the right number of answers
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
response_time = time.time() - response_start
timing_data['response_processing'] = round(response_time, 2)
print(f"Generated {len(answers)} answers")
# Calculate total time
total_time = time.time() - start_time
timing_data['total_time'] = round(total_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
print(f"FAISS Index Building: {timing_data['faiss_index_building']}s")
print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
print(f"LLM Processing: {timing_data['llm_processing']}s")
print(f"Response Processing: {timing_data['response_processing']}s")
print(f"TOTAL TIME: {timing_data['total_time']}s")
print(f"=======================\n")
result = {"answers": answers}
print(f"=== OUTPUT JSON ===")
print(f"{result}")
print(f"==================\n")
return result
except Exception as e:
total_time = time.time() - start_time
print(f"Error after {total_time:.2f} seconds: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/api/v1/hackrx/local")
async def run_local_query(request: LocalQueryRequest):
start_time = time.time()
timing_data = {}
try:
print(f"\n=== INPUT JSON ===")
print(f"Document Path: {request.document_path}")
print(f"Questions: {request.questions}")
print(f"==================\n")
print(f"Processing local document: {request.document_path}")
print(f"Processing {len(request.questions)} questions...")
# Time local PDF parsing
pdf_start = time.time()
text_chunks = parse_pdf_from_file(request.document_path)
pdf_time = time.time() - pdf_start
timing_data['pdf_parsing'] = round(pdf_time, 2)
print(f"Extracted {len(text_chunks)} text chunks from local PDF")
# Time FAISS index building
index_start = time.time()
index, texts = build_faiss_index(text_chunks)
index_time = time.time() - index_start
timing_data['faiss_index_building'] = round(index_time, 2)
# Time chunk retrieval for all questions
retrieval_start = time.time()
all_chunks = set()
for i, question in enumerate(request.questions):
question_start = time.time()
top_chunks = retrieve_chunks(index, texts, question)
question_time = time.time() - question_start
all_chunks.update(top_chunks)
retrieval_time = time.time() - retrieval_start
timing_data['chunk_retrieval'] = round(retrieval_time, 2)
print(f"Retrieved {len(all_chunks)} unique chunks")
# Time LLM processing
llm_start = time.time()
print(f"Processing all {len(request.questions)} questions in batch...")
response = query_gemini(request.questions, list(all_chunks))
llm_time = time.time() - llm_start
timing_data['llm_processing'] = round(llm_time, 2)
# Time response processing
response_start = time.time()
# Extract answers from the JSON response
if isinstance(response, dict) and "answers" in response:
answers = response["answers"]
# Ensure we have the right number of answers
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
else:
# Fallback if response is not in expected format
answers = [response] if isinstance(response, str) else []
# Ensure we have the right number of answers
while len(answers) < len(request.questions):
answers.append("Not Found")
answers = answers[:len(request.questions)]
response_time = time.time() - response_start
timing_data['response_processing'] = round(response_time, 2)
print(f"Generated {len(answers)} answers")
# Calculate total time
total_time = time.time() - start_time
timing_data['total_time'] = round(total_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
print(f"FAISS Index Building: {timing_data['faiss_index_building']}s")
print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
print(f"LLM Processing: {timing_data['llm_processing']}s")
print(f"Response Processing: {timing_data['response_processing']}s")
print(f"TOTAL TIME: {timing_data['total_time']}s")
print(f"=======================\n")
result = {"answers": answers}
print(f"=== OUTPUT JSON ===")
print(f"{result}")
print(f"==================\n")
return result
except Exception as e:
total_time = time.time() - start_time
print(f"Error after {total_time:.2f} seconds: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port) |