File size: 10,564 Bytes
ec96972
 
 
eb87b3b
 
ec96972
e15840d
 
 
 
 
 
ec96972
 
 
 
 
 
 
 
 
 
 
 
 
0d10b91
eb87b3b
ec96972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb87b3b
 
 
 
 
 
 
 
ec96972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb87b3b
 
 
ec96972
6bc8549
 
 
 
 
ec96972
 
eb87b3b
 
ec96972
eb87b3b
 
ec96972
 
eb87b3b
 
ec96972
eb87b3b
 
ec96972
eb87b3b
 
ec96972
eb87b3b
 
ec96972
eb87b3b
ec96972
 
eb87b3b
 
 
 
 
 
ec96972
 
eb87b3b
 
ec96972
eb87b3b
 
ec96972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb87b3b
 
ec96972
eb87b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc8549
 
 
 
 
 
ec96972
 
eb87b3b
 
ec96972
 
 
 
eb87b3b
 
 
ec96972
6bc8549
 
 
 
 
ec96972
 
 
eb87b3b
 
ec96972
eb87b3b
 
ec96972
 
eb87b3b
 
ec96972
eb87b3b
 
ec96972
eb87b3b
 
ec96972
eb87b3b
 
ec96972
eb87b3b
ec96972
 
eb87b3b
 
 
 
 
 
ec96972
 
eb87b3b
 
ec96972
eb87b3b
 
ec96972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb87b3b
 
ec96972
eb87b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc8549
 
 
 
 
 
ec96972
 
eb87b3b
 
ec96972
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import warnings
import logging
import time
from datetime import datetime

# Set up cache directory for HuggingFace models
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir

# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'

# Suppress specific TensorFlow deprecation warnings
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
logging.getLogger('tensorflow').setLevel(logging.ERROR)

from fastapi import FastAPI, Request, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
from embedder import build_faiss_index, preload_model
from retriever import retrieve_chunks
from llm import query_gemini
import uvicorn

app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Preload the model at startup
@app.on_event("startup")
async def startup_event():
    print("Starting up HackRx Insurance Policy Assistant...")
    print("Preloading sentence transformer model...")
    preload_model()
    print("Model preloading completed. API is ready to serve requests!")

@app.get("/")
async def root():
    return {"message": "HackRx Insurance Policy Assistant API is running!"}

@app.get("/health")
async def health_check():
    return {"status": "healthy", "message": "API is ready to process requests"}

class QueryRequest(BaseModel):
    documents: str
    questions: list[str]

class LocalQueryRequest(BaseModel):
    document_path: str
    questions: list[str]

def verify_token(authorization: str = Header(None)):
    if not authorization or not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Invalid authorization header")
    
    token = authorization.replace("Bearer ", "")
    # For demo purposes, accept any token. In production, validate against a database
    if not token:
        raise HTTPException(status_code=401, detail="Invalid token")
    
    return token

@app.post("/api/v1/hackrx/run")
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
    start_time = time.time()
    timing_data = {}
    
    try:
        print(f"\n=== INPUT JSON ===")
        print(f"Documents: {request.documents}")
        print(f"Questions: {request.questions}")
        print(f"==================\n")
        
        print(f"Processing {len(request.questions)} questions...")
        
        # Time PDF parsing
        pdf_start = time.time()
        text_chunks = parse_pdf_from_url(request.documents)
        pdf_time = time.time() - pdf_start
        timing_data['pdf_parsing'] = round(pdf_time, 2)
        print(f"Extracted {len(text_chunks)} text chunks from PDF")
        
        # Time FAISS index building
        index_start = time.time()
        index, texts = build_faiss_index(text_chunks)
        index_time = time.time() - index_start
        timing_data['faiss_index_building'] = round(index_time, 2)
        
        # Time chunk retrieval for all questions
        retrieval_start = time.time()
        all_chunks = set()
        for i, question in enumerate(request.questions):
            question_start = time.time()
            top_chunks = retrieve_chunks(index, texts, question)
            question_time = time.time() - question_start
            all_chunks.update(top_chunks)
        
        retrieval_time = time.time() - retrieval_start
        timing_data['chunk_retrieval'] = round(retrieval_time, 2)
        print(f"Retrieved {len(all_chunks)} unique chunks")
        
        # Time LLM processing
        llm_start = time.time()
        print(f"Processing all {len(request.questions)} questions in batch...")
        response = query_gemini(request.questions, list(all_chunks))
        llm_time = time.time() - llm_start
        timing_data['llm_processing'] = round(llm_time, 2)
        
        # Time response processing
        response_start = time.time()
        # Extract answers from the JSON response
        if isinstance(response, dict) and "answers" in response:
            answers = response["answers"]
            # Ensure we have the right number of answers
            while len(answers) < len(request.questions):
                answers.append("Not Found")
            answers = answers[:len(request.questions)]
        else:
            # Fallback if response is not in expected format
            answers = [response] if isinstance(response, str) else []
            # Ensure we have the right number of answers
            while len(answers) < len(request.questions):
                answers.append("Not Found")
            answers = answers[:len(request.questions)]
        
        response_time = time.time() - response_start
        timing_data['response_processing'] = round(response_time, 2)
        print(f"Generated {len(answers)} answers")
        
        # Calculate total time
        total_time = time.time() - start_time
        timing_data['total_time'] = round(total_time, 2)
        
        print(f"\n=== TIMING BREAKDOWN ===")
        print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
        print(f"FAISS Index Building: {timing_data['faiss_index_building']}s")
        print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
        print(f"LLM Processing: {timing_data['llm_processing']}s")
        print(f"Response Processing: {timing_data['response_processing']}s")
        print(f"TOTAL TIME: {timing_data['total_time']}s")
        print(f"=======================\n")
        
        result = {"answers": answers}
        print(f"=== OUTPUT JSON ===")
        print(f"{result}")
        print(f"==================\n")
        
        return result
        
    except Exception as e:
        total_time = time.time() - start_time
        print(f"Error after {total_time:.2f} seconds: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

@app.post("/api/v1/hackrx/local")
async def run_local_query(request: LocalQueryRequest):
    start_time = time.time()
    timing_data = {}
    
    try:
        print(f"\n=== INPUT JSON ===")
        print(f"Document Path: {request.document_path}")
        print(f"Questions: {request.questions}")
        print(f"==================\n")
        
        print(f"Processing local document: {request.document_path}")
        print(f"Processing {len(request.questions)} questions...")
        
        # Time local PDF parsing
        pdf_start = time.time()
        text_chunks = parse_pdf_from_file(request.document_path)
        pdf_time = time.time() - pdf_start
        timing_data['pdf_parsing'] = round(pdf_time, 2)
        print(f"Extracted {len(text_chunks)} text chunks from local PDF")
        
        # Time FAISS index building
        index_start = time.time()
        index, texts = build_faiss_index(text_chunks)
        index_time = time.time() - index_start
        timing_data['faiss_index_building'] = round(index_time, 2)
        
        # Time chunk retrieval for all questions
        retrieval_start = time.time()
        all_chunks = set()
        for i, question in enumerate(request.questions):
            question_start = time.time()
            top_chunks = retrieve_chunks(index, texts, question)
            question_time = time.time() - question_start
            all_chunks.update(top_chunks)
        
        retrieval_time = time.time() - retrieval_start
        timing_data['chunk_retrieval'] = round(retrieval_time, 2)
        print(f"Retrieved {len(all_chunks)} unique chunks")
        
        # Time LLM processing
        llm_start = time.time()
        print(f"Processing all {len(request.questions)} questions in batch...")
        response = query_gemini(request.questions, list(all_chunks))
        llm_time = time.time() - llm_start
        timing_data['llm_processing'] = round(llm_time, 2)
        
        # Time response processing
        response_start = time.time()
        # Extract answers from the JSON response
        if isinstance(response, dict) and "answers" in response:
            answers = response["answers"]
            # Ensure we have the right number of answers
            while len(answers) < len(request.questions):
                answers.append("Not Found")
            answers = answers[:len(request.questions)]
        else:
            # Fallback if response is not in expected format
            answers = [response] if isinstance(response, str) else []
            # Ensure we have the right number of answers
            while len(answers) < len(request.questions):
                answers.append("Not Found")
            answers = answers[:len(request.questions)]
        
        response_time = time.time() - response_start
        timing_data['response_processing'] = round(response_time, 2)
        print(f"Generated {len(answers)} answers")
        
        # Calculate total time
        total_time = time.time() - start_time
        timing_data['total_time'] = round(total_time, 2)
        
        print(f"\n=== TIMING BREAKDOWN ===")
        print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
        print(f"FAISS Index Building: {timing_data['faiss_index_building']}s")
        print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
        print(f"LLM Processing: {timing_data['llm_processing']}s")
        print(f"Response Processing: {timing_data['response_processing']}s")
        print(f"TOTAL TIME: {timing_data['total_time']}s")
        print(f"=======================\n")
        
        result = {"answers": answers}
        print(f"=== OUTPUT JSON ===")
        print(f"{result}")
        print(f"==================\n")
        
        return result
        
    except Exception as e:
        total_time = time.time() - start_time
        print(f"Error after {total_time:.2f} seconds: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run("app:app", host="0.0.0.0", port=port)