Spaces:
Running
Running
File size: 1,649 Bytes
ec96972 e15840d ec96972 e15840d eb87b3b e15840d eb87b3b e15840d 6bc8549 e15840d 6bc8549 e15840d ec96972 eb87b3b ec96972 e15840d ec96972 6bc8549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import faiss
from sentence_transformers import SentenceTransformer
import numpy as np
import os
# Set up cache directory in a writable location
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
# Initialize model as None - will be loaded lazily
_model = None
def preload_model():
"""Preload the sentence transformer model at startup"""
global _model
if _model is None:
print("Preloading sentence transformer model...")
try:
_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder=cache_dir)
print("Model preloading completed")
except Exception as e:
print(f"Error loading model: {e}")
# Fallback to a different model if the first one fails
try:
_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", cache_folder=cache_dir)
print("Fallback model preloading completed")
except Exception as e2:
print(f"Error loading fallback model: {e2}")
raise
return _model
def get_model():
"""Get the sentence transformer model, loading it lazily if needed"""
global _model
if _model is None:
print("Warning: Model not preloaded, loading now...")
return preload_model()
return _model
def build_faiss_index(chunks):
model = get_model()
embeddings = model.encode(chunks)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings))
return index, chunks |