from transformers import BertTokenizer, BertForSequenceClassification import torch model = BertForSequenceClassification.from_pretrained('./test_model') tokenizer = BertForSequenceClassification.from_pretrained('./test_tokenizer') def predict_relevance(question, answer): if not answer.strip(): # Check for empty answers return "Irrelevant" inputs = tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) model.eval() with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=-1) # Adjust the threshold threshold = 0.5 prediction = torch.argmax(probabilities, dim=-1) relevant_prob = probabilities[0, 1] # Probability for relevant class #threshold logic if relevant_prob > threshold: return "Relevant" else: return "Irrelevant" # Example question = "What is your experience with Python?" answer = "I have minimal experience with java, mostly for small automation tasks." # Empty answer result = predict_relevance(question, answer) print(f"Relevance: {result}")