Spaces:
Sleeping
Sleeping
from transformers import BertTokenizer, BertForSequenceClassification | |
import torch | |
model = BertForSequenceClassification.from_pretrained('./confidence_model') | |
tokenizer = BertTokenizer.from_pretrained('./confidence_tokenizer') | |
def predict_confidence(question, answer): | |
inputs = tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predictions = torch.argmax(logits, dim=-1) | |
return "Confident" if predictions.item() == 1 else "Not Confident" | |
# Example | |
question = "What is your experience with Python?" | |
answer = "I dont have any experience in Python" | |
print(predict_confidence(question, answer)) | |