File size: 7,367 Bytes
81bc0f3 9c1e852 81bc0f3 6d5ef45 e011761 81bc0f3 9c1e852 81bc0f3 9c1e852 81bc0f3 56d0b10 81bc0f3 9c1e852 b48f4c6 56d0b10 fdf347a 81bc0f3 56d0b10 9c1e852 56d0b10 9c1e852 56d0b10 9c1e852 56d0b10 9c1e852 81bc0f3 56d0b10 9c1e852 56d0b10 9c1e852 56d0b10 81bc0f3 9c1e852 56d0b10 9c1e852 56d0b10 81bc0f3 56d0b10 81bc0f3 9c1e852 81bc0f3 9c1e852 56d0b10 9c1e852 56d0b10 466d120 c9900d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import whisper
import gradio as gr
import torch
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
from app.questions import get_question
# Load models
whisper_model = whisper.load_model("small")
confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/final_confidence')
confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/final_confidence')
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model')
context_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/context_model')
emotion_pipe = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
# Emotion map with labels and emojis
interview_emotion_map = {
"joy": ("Confident", "๐"),
"fear": ("Nervous", "๐จ"),
"sadness": ("Uncertain", "๐"),
"anger": ("Frustrated", "๐ "),
"surprise": ("Curious", "๐ฎ"),
"neutral": ("Calm", "๐"),
"disgust": ("Disengaged", "๐"),
}
# Static question sets
technical_questions = [get_question(i) for i in range(6)]
non_technical_questions = [
"Tell me about yourself.",
"What are your strengths and weaknesses?",
"Where do you see yourself in 5 years?",
"How do you handle stress or pressure?",
"Describe a time you faced a conflict and how you resolved it.",
"What motivates you to do your best?"
]
# Index trackers
current_tech_index = 0
current_non_tech_index = 0
# Relevance prediction
def predict_relevance(question, answer):
if not answer.strip():
return "Irrelevant"
inputs = context_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
context_model.eval()
with torch.no_grad():
outputs = context_model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=-1)
return "Relevant" if probabilities[0, 1] > 0.5 else "Irrelevant"
# Confidence prediction
def predict_confidence(question, answer, threshold=0.4):
if not isinstance(answer, str) or not answer.strip():
return "Not Confident"
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
confidence_model.eval()
with torch.no_grad():
outputs = confidence_model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=-1)
return "Confident" if probabilities[0, 1].item() > threshold else "Not Confident"
# Emotion detection
def detect_emotion(answer):
if not answer.strip():
return "No Answer", ""
result = emotion_pipe(answer)
label = result[0][0]["label"].lower()
emotion_text, emoji = interview_emotion_map.get(label, ("Unknown", "โ"))
return emotion_text, emoji
# Question navigation (non-tech)
def show_non_tech_question():
global current_non_tech_index
return non_technical_questions[current_non_tech_index]
def next_non_tech_question():
global current_non_tech_index
current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions)
return non_technical_questions[current_non_tech_index], None, "", ""
# Question navigation (tech)
def show_tech_question():
global current_tech_index
return technical_questions[current_tech_index]
def next_tech_question():
global current_tech_index
current_tech_index = (current_tech_index + 1) % len(technical_questions)
return technical_questions[current_tech_index], None, "", "", ""
# Transcribe + analyze (non-technical)
def transcribe_and_analyze_non_tech(audio, question):
try:
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
transcribed_text = result.text
emotion_text, emoji = detect_emotion(transcribed_text)
return transcribed_text, f"{emotion_text} {emoji}"
except Exception as e:
return f"Error: {str(e)}", "โ"
# Transcribe + analyze (technical)
def transcribe_and_analyze_tech(audio, question):
try:
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
transcribed_text = result.text
context_result = predict_relevance(question, transcribed_text)
confidence_result = predict_confidence(question, transcribed_text)
return transcribed_text, context_result, confidence_result
except Exception as e:
return f"Error: {str(e)}", "", ""
# UI layout
with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo:
gr.HTML("<h1 style='text-align: center; font-size: 32px;'>INTERVIEW PREPARATION MODEL</h1>")
with gr.Tabs():
# NON-TECHNICAL TAB
with gr.Tab("Non-Technical"):
gr.Markdown("### Emotional Context Analysis (๐ง + ๐)")
question_display_1 = gr.Textbox(label="Interview Question", value=show_non_tech_question(), interactive=False)
audio_input_1 = gr.Audio(type="filepath", label="Record Your Answer")
transcribed_text_1 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
emotion_output = gr.Textbox(label="Detected Emotion", interactive=False)
audio_input_1.change(fn=transcribe_and_analyze_non_tech,
inputs=[audio_input_1, question_display_1],
outputs=[transcribed_text_1, emotion_output])
next_button_1 = gr.Button("Next Question")
next_button_1.click(fn=next_non_tech_question,
outputs=[question_display_1, audio_input_1, transcribed_text_1, emotion_output])
# TECHNICAL TAB
with gr.Tab("Technical"):
gr.Markdown("### Technical Question Analysis (๐ + ๐ค)")
question_display_2 = gr.Textbox(label="Interview Question", value=show_tech_question(), interactive=False)
audio_input_2 = gr.Audio(type="filepath", label="Record Your Answer")
transcribed_text_2 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
context_analysis_result = gr.Textbox(label="Context Analysis", interactive=False)
confidence_analysis_result = gr.Textbox(label="Confidence Analysis", interactive=False)
audio_input_2.change(fn=transcribe_and_analyze_tech,
inputs=[audio_input_2, question_display_2],
outputs=[transcribed_text_2, context_analysis_result, confidence_analysis_result])
next_button_2 = gr.Button("Next Question")
next_button_2.click(fn=next_tech_question,
outputs=[question_display_2, audio_input_2, transcribed_text_2,
context_analysis_result, confidence_analysis_result])
if __name__ == "__main__":
import os
# Force disable API mode specifically for Hugging Face Spaces
if "SPACE_ID" in os.environ:
demo.launch(share=False, show_api=False, api_mode=False)
else:
demo.launch(share=True, show_api=False)
|