Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import hashlib
|
5 |
+
import datetime
|
6 |
+
from typing import List, Dict, Any, Optional
|
7 |
+
import requests
|
8 |
+
import time
|
9 |
+
import uuid
|
10 |
+
from pinecone import Pinecone
|
11 |
+
|
12 |
+
class RAGMemorySystem:
|
13 |
+
"""RAG system using Pinecone with integrated inference for embeddings and vector storage"""
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
# Initialize Pinecone - use the hardcoded key or environment variable
|
17 |
+
self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
18 |
+
self.pinecone_environment = os.getenv("PINECONE_ENVIRONMENT", "us-east-1") # Serverless doesn't need specific environment
|
19 |
+
|
20 |
+
# Generate unique index name with timestamp to avoid conflicts
|
21 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
22 |
+
user_id = str(uuid.uuid4())[:8]
|
23 |
+
self.index_name = os.getenv("PINECONE_INDEX_NAME", f"ai-experiences-{timestamp}-{user_id}")
|
24 |
+
|
25 |
+
# Pinecone inference model configuration
|
26 |
+
self.embedding_model = os.getenv("PINECONE_EMBEDDING_MODEL", "multilingual-e5-large")
|
27 |
+
self.rerank_model = os.getenv("PINECONE_RERANK_MODEL", "pinecone-rerank-v0")
|
28 |
+
|
29 |
+
# Initialize OpenRouter
|
30 |
+
self.openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
|
31 |
+
self.model_name = os.getenv("MODEL_NAME", "meta-llama/llama-4-maverick:free")
|
32 |
+
|
33 |
+
# Initialize Pinecone client
|
34 |
+
self.pc = None
|
35 |
+
self.index = None
|
36 |
+
|
37 |
+
# Initialize Pinecone
|
38 |
+
self.init_pinecone()
|
39 |
+
|
40 |
+
def init_pinecone(self):
|
41 |
+
"""Initialize Pinecone connection with integrated inference"""
|
42 |
+
try:
|
43 |
+
if self.pinecone_api_key:
|
44 |
+
# Initialize Pinecone client
|
45 |
+
self.pc = Pinecone(api_key=self.pinecone_api_key)
|
46 |
+
|
47 |
+
print(f"Attempting to connect to Pinecone...")
|
48 |
+
|
49 |
+
# Check existing indexes
|
50 |
+
try:
|
51 |
+
existing_indexes = [idx.name for idx in self.pc.list_indexes()]
|
52 |
+
print(f"Existing indexes: {existing_indexes}")
|
53 |
+
except Exception as list_error:
|
54 |
+
print(f"Error listing indexes: {list_error}")
|
55 |
+
existing_indexes = []
|
56 |
+
|
57 |
+
# Create index with integrated inference if it doesn't exist
|
58 |
+
if self.index_name not in existing_indexes:
|
59 |
+
print(f"Creating new Pinecone index with integrated inference: {self.index_name}")
|
60 |
+
try:
|
61 |
+
# Create index with integrated embedding model
|
62 |
+
index_model = self.pc.create_index_for_model(
|
63 |
+
name=self.index_name,
|
64 |
+
cloud="aws",
|
65 |
+
region="us-east-1",
|
66 |
+
embed={
|
67 |
+
"model": self.embedding_model,
|
68 |
+
"field_map": {"text": "content"} # Map 'text' field to 'content' field
|
69 |
+
}
|
70 |
+
)
|
71 |
+
print(f"Successfully created index with integrated inference: {self.index_name}")
|
72 |
+
print(f"Index details: {index_model}")
|
73 |
+
|
74 |
+
# Wait for index to be ready
|
75 |
+
time.sleep(10)
|
76 |
+
|
77 |
+
except Exception as create_error:
|
78 |
+
print(f"Error creating index with integrated inference: {create_error}")
|
79 |
+
# Fallback to traditional index creation
|
80 |
+
try:
|
81 |
+
self.pc.create_index(
|
82 |
+
name=self.index_name,
|
83 |
+
dimension=1024, # multilingual-e5-large dimension
|
84 |
+
metric="cosine",
|
85 |
+
spec={
|
86 |
+
"serverless": {
|
87 |
+
"cloud": "aws",
|
88 |
+
"region": "us-east-1"
|
89 |
+
}
|
90 |
+
}
|
91 |
+
)
|
92 |
+
print(f"Created fallback traditional index: {self.index_name}")
|
93 |
+
time.sleep(5)
|
94 |
+
except Exception as fallback_error:
|
95 |
+
print(f"Failed to create fallback index: {fallback_error}")
|
96 |
+
|
97 |
+
# Try with simpler name
|
98 |
+
simple_name = f"ai-exp-{str(uuid.uuid4())[:6]}"
|
99 |
+
try:
|
100 |
+
self.pc.create_index(
|
101 |
+
name=simple_name,
|
102 |
+
dimension=1024,
|
103 |
+
metric="cosine",
|
104 |
+
spec={
|
105 |
+
"serverless": {
|
106 |
+
"cloud": "aws",
|
107 |
+
"region": "us-east-1"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
)
|
111 |
+
self.index_name = simple_name
|
112 |
+
print(f"Created simple fallback index: {self.index_name}")
|
113 |
+
time.sleep(5)
|
114 |
+
except Exception as final_error:
|
115 |
+
print(f"Final index creation failed: {final_error}")
|
116 |
+
self.index = None
|
117 |
+
return
|
118 |
+
|
119 |
+
# Connect to the index
|
120 |
+
try:
|
121 |
+
self.index = self.pc.Index(self.index_name)
|
122 |
+
print(f"Successfully connected to Pinecone index: {self.index_name}")
|
123 |
+
|
124 |
+
# Test the connection
|
125 |
+
stats = self.index.describe_index_stats()
|
126 |
+
print(f"Index stats: {stats}")
|
127 |
+
|
128 |
+
except Exception as connect_error:
|
129 |
+
print(f"Error connecting to index: {connect_error}")
|
130 |
+
self.index = None
|
131 |
+
|
132 |
+
else:
|
133 |
+
print("Warning: Pinecone API key not found. Memory storage disabled.")
|
134 |
+
self.index = None
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
print(f"Error initializing Pinecone: {e}")
|
138 |
+
self.index = None
|
139 |
+
|
140 |
+
def create_embedding(self, text: str) -> List[float]:
|
141 |
+
"""Create embedding using Pinecone's inference API"""
|
142 |
+
try:
|
143 |
+
if not self.pc:
|
144 |
+
print("Pinecone client not available, returning zero vector")
|
145 |
+
return [0.0] * 1024
|
146 |
+
|
147 |
+
# Use Pinecone's inference API for embeddings
|
148 |
+
response = self.pc.inference.embed(
|
149 |
+
model=self.embedding_model,
|
150 |
+
inputs=[text],
|
151 |
+
parameters={
|
152 |
+
"input_type": "passage", # Use 'passage' for storing, 'query' for searching
|
153 |
+
"truncate": "END"
|
154 |
+
}
|
155 |
+
)
|
156 |
+
|
157 |
+
if response and len(response.data) > 0:
|
158 |
+
return response.data[0].values
|
159 |
+
else:
|
160 |
+
print("No embedding data received, returning zero vector")
|
161 |
+
return [0.0] * 1024
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error creating embedding with Pinecone inference: {e}")
|
165 |
+
return [0.0] * 1024 # Return zero vector as fallback
|
166 |
+
|
167 |
+
def create_query_embedding(self, text: str) -> List[float]:
|
168 |
+
"""Create embedding for query using Pinecone's inference API"""
|
169 |
+
try:
|
170 |
+
if not self.pc:
|
171 |
+
print("Pinecone client not available, returning zero vector")
|
172 |
+
return [0.0] * 1024
|
173 |
+
|
174 |
+
# Use Pinecone's inference API for query embeddings
|
175 |
+
response = self.pc.inference.embed(
|
176 |
+
model=self.embedding_model,
|
177 |
+
inputs=[text],
|
178 |
+
parameters={
|
179 |
+
"input_type": "query", # Use 'query' for searching
|
180 |
+
"truncate": "END"
|
181 |
+
}
|
182 |
+
)
|
183 |
+
|
184 |
+
if response and len(response.data) > 0:
|
185 |
+
return response.data[0].values
|
186 |
+
else:
|
187 |
+
print("No embedding data received, returning zero vector")
|
188 |
+
return [0.0] * 1024
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error creating query embedding with Pinecone inference: {e}")
|
192 |
+
return [0.0] * 1024 # Return zero vector as fallback
|
193 |
+
|
194 |
+
def store_experience(self, user_input: str, ai_response: str, context: str = "") -> str:
|
195 |
+
"""Store conversation experience in Pinecone using integrated inference"""
|
196 |
+
if not self.index:
|
197 |
+
return "Memory storage not available (Pinecone not configured)"
|
198 |
+
|
199 |
+
try:
|
200 |
+
# Create a unique ID for this experience
|
201 |
+
experience_id = hashlib.md5(
|
202 |
+
f"{user_input}_{ai_response}_{datetime.datetime.now()}_{uuid.uuid4()}".encode()
|
203 |
+
).hexdigest()
|
204 |
+
|
205 |
+
# Create combined text for embedding
|
206 |
+
combined_text = f"User: {user_input}\nAI: {ai_response}\nContext: {context}"
|
207 |
+
|
208 |
+
# Check if index supports integrated inference
|
209 |
+
try:
|
210 |
+
# Try using integrated inference first (if index was created with create_index_for_model)
|
211 |
+
record = {
|
212 |
+
"id": experience_id,
|
213 |
+
"content": combined_text, # This will be automatically embedded
|
214 |
+
"metadata": {
|
215 |
+
"user_input": user_input[:1000],
|
216 |
+
"ai_response": ai_response[:1000],
|
217 |
+
"context": context[:500],
|
218 |
+
"timestamp": datetime.datetime.now().isoformat(),
|
219 |
+
"interaction_type": "conversation",
|
220 |
+
"session_id": getattr(self, 'session_id', 'default')
|
221 |
+
}
|
222 |
+
}
|
223 |
+
|
224 |
+
# Try upsert with integrated inference
|
225 |
+
self.index.upsert_records([record])
|
226 |
+
return f"β
Experience stored with integrated inference, ID: {experience_id[:8]}... in index: {self.index_name}"
|
227 |
+
|
228 |
+
except Exception as integrated_error:
|
229 |
+
print(f"Integrated inference failed: {integrated_error}")
|
230 |
+
|
231 |
+
# Fallback to manual embedding
|
232 |
+
embedding = self.create_embedding(combined_text)
|
233 |
+
|
234 |
+
# Store in Pinecone with manual embedding
|
235 |
+
self.index.upsert([(experience_id, embedding, {
|
236 |
+
"user_input": user_input[:1000],
|
237 |
+
"ai_response": ai_response[:1000],
|
238 |
+
"context": context[:500],
|
239 |
+
"timestamp": datetime.datetime.now().isoformat(),
|
240 |
+
"interaction_type": "conversation",
|
241 |
+
"session_id": getattr(self, 'session_id', 'default')
|
242 |
+
})])
|
243 |
+
|
244 |
+
return f"β
Experience stored with manual embedding, ID: {experience_id[:8]}... in index: {self.index_name}"
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
return f"β Error storing experience: {e}"
|
248 |
+
|
249 |
+
def retrieve_relevant_experiences(self, query: str, top_k: int = 3) -> List[Dict]:
|
250 |
+
"""Retrieve relevant past experiences based on query using Pinecone inference"""
|
251 |
+
if not self.index:
|
252 |
+
return []
|
253 |
+
|
254 |
+
try:
|
255 |
+
# Try integrated search first
|
256 |
+
try:
|
257 |
+
results = self.index.search_records(
|
258 |
+
query={
|
259 |
+
"top_k": top_k,
|
260 |
+
"inputs": {"text": query}
|
261 |
+
},
|
262 |
+
include_metadata=True
|
263 |
+
)
|
264 |
+
|
265 |
+
relevant_experiences = []
|
266 |
+
if hasattr(results, 'matches'):
|
267 |
+
for match in results.matches:
|
268 |
+
if match.score > 0.3:
|
269 |
+
relevant_experiences.append({
|
270 |
+
"score": match.score,
|
271 |
+
"user_input": match.metadata.get("user_input", ""),
|
272 |
+
"ai_response": match.metadata.get("ai_response", ""),
|
273 |
+
"context": match.metadata.get("context", ""),
|
274 |
+
"timestamp": match.metadata.get("timestamp", ""),
|
275 |
+
"id": match.id
|
276 |
+
})
|
277 |
+
|
278 |
+
return relevant_experiences
|
279 |
+
|
280 |
+
except Exception as integrated_error:
|
281 |
+
print(f"Integrated search failed: {integrated_error}")
|
282 |
+
|
283 |
+
# Fallback to manual embedding + query
|
284 |
+
query_embedding = self.create_query_embedding(query)
|
285 |
+
|
286 |
+
# Search Pinecone with manual embedding
|
287 |
+
results = self.index.query(
|
288 |
+
vector=query_embedding,
|
289 |
+
top_k=top_k,
|
290 |
+
include_metadata=True
|
291 |
+
)
|
292 |
+
|
293 |
+
relevant_experiences = []
|
294 |
+
for match in results.matches:
|
295 |
+
if match.score > 0.3:
|
296 |
+
relevant_experiences.append({
|
297 |
+
"score": match.score,
|
298 |
+
"user_input": match.metadata.get("user_input", ""),
|
299 |
+
"ai_response": match.metadata.get("ai_response", ""),
|
300 |
+
"context": match.metadata.get("context", ""),
|
301 |
+
"timestamp": match.metadata.get("timestamp", ""),
|
302 |
+
"id": match.id
|
303 |
+
})
|
304 |
+
|
305 |
+
return relevant_experiences
|
306 |
+
|
307 |
+
except Exception as e:
|
308 |
+
print(f"Error retrieving experiences: {e}")
|
309 |
+
return []
|
310 |
+
|
311 |
+
def rerank_results(self, query: str, documents: List[str]) -> List[Dict]:
|
312 |
+
"""Rerank results using Pinecone's reranking model"""
|
313 |
+
if not self.pc or not documents:
|
314 |
+
return []
|
315 |
+
|
316 |
+
try:
|
317 |
+
# Use Pinecone's inference API for reranking
|
318 |
+
response = self.pc.inference.rerank(
|
319 |
+
model=self.rerank_model,
|
320 |
+
query=query,
|
321 |
+
documents=documents,
|
322 |
+
top_k=min(len(documents), 5) # Rerank top 5
|
323 |
+
)
|
324 |
+
|
325 |
+
reranked_results = []
|
326 |
+
if response and hasattr(response, 'data'):
|
327 |
+
for result in response.data:
|
328 |
+
reranked_results.append({
|
329 |
+
"document": result.document.text,
|
330 |
+
"score": result.relevance_score,
|
331 |
+
"index": result.index
|
332 |
+
})
|
333 |
+
|
334 |
+
return reranked_results
|
335 |
+
|
336 |
+
except Exception as e:
|
337 |
+
print(f"Error reranking results: {e}")
|
338 |
+
return []
|
339 |
+
|
340 |
+
def call_openrouter(self, messages: List[Dict], temperature: float = 0.7) -> str:
|
341 |
+
"""Call OpenRouter API"""
|
342 |
+
if not self.openrouter_api_key:
|
343 |
+
return "Error: OpenRouter API key not configured. Please set the OPENROUTER_API_KEY environment variable."
|
344 |
+
|
345 |
+
try:
|
346 |
+
headers = {
|
347 |
+
"Authorization": f"Bearer {self.openrouter_api_key}",
|
348 |
+
"Content-Type": "application/json",
|
349 |
+
"HTTP-Referer": "https://huggingface.co",
|
350 |
+
"X-Title": "AI RAG Memory System"
|
351 |
+
}
|
352 |
+
|
353 |
+
data = {
|
354 |
+
"model": self.model_name,
|
355 |
+
"messages": messages,
|
356 |
+
"temperature": temperature,
|
357 |
+
"max_tokens": 1000
|
358 |
+
}
|
359 |
+
|
360 |
+
response = requests.post(
|
361 |
+
"https://openrouter.ai/api/v1/chat/completions",
|
362 |
+
headers=headers,
|
363 |
+
json=data,
|
364 |
+
timeout=30
|
365 |
+
)
|
366 |
+
|
367 |
+
if response.status_code == 200:
|
368 |
+
result = response.json()
|
369 |
+
return result["choices"][0]["message"]["content"]
|
370 |
+
else:
|
371 |
+
return f"API Error: {response.status_code} - {response.text}"
|
372 |
+
|
373 |
+
except Exception as e:
|
374 |
+
return f"Error calling OpenRouter: {e}"
|
375 |
+
|
376 |
+
def generate_response_with_rag(self, user_input: str, conversation_history: List = None) -> tuple:
|
377 |
+
"""Generate AI response using RAG with stored experiences and Pinecone inference"""
|
378 |
+
# Retrieve relevant past experiences
|
379 |
+
relevant_experiences = self.retrieve_relevant_experiences(user_input)
|
380 |
+
|
381 |
+
# Build context from relevant experiences
|
382 |
+
context_parts = []
|
383 |
+
if relevant_experiences:
|
384 |
+
context_parts.append("π§ Relevant past experiences (powered by Pinecone inference):")
|
385 |
+
|
386 |
+
# Extract documents for reranking
|
387 |
+
documents = [f"User: {exp['user_input']} AI: {exp['ai_response']}" for exp in relevant_experiences]
|
388 |
+
|
389 |
+
# Try to rerank the results
|
390 |
+
reranked = self.rerank_results(user_input, documents)
|
391 |
+
|
392 |
+
if reranked:
|
393 |
+
context_parts.append(f"\nπ Reranked results using {self.rerank_model}:")
|
394 |
+
for i, result in enumerate(reranked, 1):
|
395 |
+
context_parts.append(f"{i}. (Relevance: {result['score']:.3f}) {result['document'][:200]}...")
|
396 |
+
else:
|
397 |
+
# Fallback to original results
|
398 |
+
for i, exp in enumerate(relevant_experiences, 1):
|
399 |
+
context_parts.append(f"\n{i}. Previous interaction (similarity: {exp['score']:.2f}):")
|
400 |
+
context_parts.append(f" π€ User: {exp['user_input'][:200]}...")
|
401 |
+
context_parts.append(f" π€ AI: {exp['ai_response'][:200]}...")
|
402 |
+
context_parts.append(f" π Time: {exp['timestamp'][:19]}")
|
403 |
+
if exp['context']:
|
404 |
+
context_parts.append(f" π Context: {exp['context'][:100]}...")
|
405 |
+
context_parts.append("")
|
406 |
+
else:
|
407 |
+
context_parts.append("π No previous relevant experiences found. This is a fresh conversation!")
|
408 |
+
|
409 |
+
context_str = "\n".join(context_parts)
|
410 |
+
|
411 |
+
# Build messages for the AI
|
412 |
+
messages = [
|
413 |
+
{
|
414 |
+
"role": "system",
|
415 |
+
"content": f"""You are an AI assistant with access to your past experiences and interactions through Pinecone's vector database with integrated inference.
|
416 |
+
The embeddings are generated using {self.embedding_model} and results are reranked with {self.rerank_model}.
|
417 |
+
|
418 |
+
Use the relevant past experiences below to inform your response, but don't just repeat them - learn from them and provide thoughtful, personalized responses.
|
419 |
+
|
420 |
+
{context_str}
|
421 |
+
|
422 |
+
Guidelines:
|
423 |
+
- Reference past experiences when relevant and helpful
|
424 |
+
- Show that you remember and learn from interactions using Pinecone's memory system
|
425 |
+
- Provide helpful, contextual responses
|
426 |
+
- Be conversational and engaging
|
427 |
+
- If you see similar questions from before, build upon previous responses
|
428 |
+
- Acknowledge when you're learning something new through the memory system"""
|
429 |
+
}
|
430 |
+
]
|
431 |
+
|
432 |
+
# Add conversation history if provided
|
433 |
+
if conversation_history:
|
434 |
+
for msg in conversation_history[-5:]: # Last 5 messages
|
435 |
+
messages.append(msg)
|
436 |
+
|
437 |
+
# Add current user input
|
438 |
+
messages.append({"role": "user", "content": user_input})
|
439 |
+
|
440 |
+
# Generate response
|
441 |
+
ai_response = self.call_openrouter(messages)
|
442 |
+
|
443 |
+
# Store this interaction as a new experience
|
444 |
+
storage_result = self.store_experience(user_input, ai_response, context_str)
|
445 |
+
|
446 |
+
return ai_response, context_str, storage_result
|
447 |
+
|
448 |
+
# Initialize the RAG system
|
449 |
+
rag_system = RAGMemorySystem()
|
450 |
+
|
451 |
+
def chat_with_rag(message: str, history: List = None) -> tuple:
|
452 |
+
"""Main chat function for Gradio interface"""
|
453 |
+
if not message.strip():
|
454 |
+
return "Please enter a message.", "", ""
|
455 |
+
|
456 |
+
# Convert Gradio history format to OpenAI format
|
457 |
+
conversation_history = []
|
458 |
+
if history:
|
459 |
+
for user_msg, ai_msg in history:
|
460 |
+
if user_msg:
|
461 |
+
conversation_history.append({"role": "user", "content": user_msg})
|
462 |
+
if ai_msg:
|
463 |
+
conversation_history.append({"role": "assistant", "content": ai_msg})
|
464 |
+
|
465 |
+
# Generate response with RAG
|
466 |
+
ai_response, context_used, storage_info = rag_system.generate_response_with_rag(
|
467 |
+
message, conversation_history
|
468 |
+
)
|
469 |
+
|
470 |
+
return ai_response, context_used, storage_info
|
471 |
+
|
472 |
+
def clear_conversation():
|
473 |
+
"""Clear the conversation history"""
|
474 |
+
return [], "", "", ""
|
475 |
+
|
476 |
+
def get_system_status():
|
477 |
+
"""Get current system status"""
|
478 |
+
status = []
|
479 |
+
|
480 |
+
# Check Pinecone connection
|
481 |
+
if rag_system.index:
|
482 |
+
try:
|
483 |
+
stats = rag_system.index.describe_index_stats()
|
484 |
+
status.append(f"β
Pinecone: Connected to '{rag_system.index_name}'")
|
485 |
+
status.append(f"π Stored experiences: {stats.get('total_vector_count', 0)}")
|
486 |
+
status.append(f"π§ Embedding model: {rag_system.embedding_model}")
|
487 |
+
status.append(f"π Reranking model: {rag_system.rerank_model}")
|
488 |
+
except:
|
489 |
+
status.append(f"β οΈ Pinecone: Connected but cannot get stats")
|
490 |
+
else:
|
491 |
+
status.append("β Pinecone: Not connected")
|
492 |
+
|
493 |
+
# Check OpenRouter
|
494 |
+
if rag_system.openrouter_api_key:
|
495 |
+
status.append(f"β
OpenRouter: API key configured")
|
496 |
+
status.append(f"π€ Model: {rag_system.model_name}")
|
497 |
+
else:
|
498 |
+
status.append("β OpenRouter: API key not configured")
|
499 |
+
|
500 |
+
return "\n".join(status)
|
501 |
+
|
502 |
+
# Create Gradio interface
|
503 |
+
with gr.Blocks(
|
504 |
+
title="AI with Pinecone Integrated Inference RAG",
|
505 |
+
theme=gr.themes.Soft(),
|
506 |
+
css="""
|
507 |
+
.container { max-width: 1200px; margin: auto; }
|
508 |
+
.chat-container { height: 400px; overflow-y: auto; }
|
509 |
+
.context-box { background-color: #f8f9fa; padding: 10px; border-radius: 5px; font-family: monospace; }
|
510 |
+
.status-box { background-color: #e8f4f8; padding: 10px; border-radius: 5px; font-family: monospace; }
|
511 |
+
"""
|
512 |
+
) as demo:
|
513 |
+
|
514 |
+
gr.HTML("""
|
515 |
+
<div style="text-align: center; padding: 20px;">
|
516 |
+
<h1>π€ AI Assistant with Pinecone Integrated Inference RAG</h1>
|
517 |
+
<p>This AI assistant uses Pinecone's integrated inference for embeddings and reranking with vector storage for memory.</p>
|
518 |
+
<p>Powered by <strong>multilingual-e5-large</strong> embeddings and <strong>pinecone-rerank-v0</strong> reranking model.</p>
|
519 |
+
<p><strong>π Auto-Environment Creation:</strong> The system automatically creates a new Pinecone environment with integrated inference!</p>
|
520 |
+
</div>
|
521 |
+
""")
|
522 |
+
|
523 |
+
# System Status
|
524 |
+
with gr.Row():
|
525 |
+
with gr.Column():
|
526 |
+
status_display = gr.Textbox(
|
527 |
+
label="π§ System Status",
|
528 |
+
value=get_system_status(),
|
529 |
+
lines=8,
|
530 |
+
interactive=False,
|
531 |
+
elem_classes=["status-box"]
|
532 |
+
)
|
533 |
+
refresh_status_btn = gr.Button("π Refresh Status", variant="secondary")
|
534 |
+
|
535 |
+
with gr.Row():
|
536 |
+
with gr.Column(scale=2):
|
537 |
+
chatbot = gr.Chatbot(
|
538 |
+
label="Conversation",
|
539 |
+
height=400,
|
540 |
+
elem_classes=["chat-container"]
|
541 |
+
)
|
542 |
+
|
543 |
+
with gr.Row():
|
544 |
+
msg = gr.Textbox(
|
545 |
+
placeholder="Type your message here...",
|
546 |
+
label="Your Message",
|
547 |
+
lines=2,
|
548 |
+
scale=4
|
549 |
+
)
|
550 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
551 |
+
clear_btn = gr.Button("Clear", variant="secondary", scale=1)
|
552 |
+
|
553 |
+
with gr.Column(scale=1):
|
554 |
+
gr.HTML("<h3>π RAG Context</h3>")
|
555 |
+
context_display = gr.Textbox(
|
556 |
+
label="Retrieved & Reranked Experiences",
|
557 |
+
lines=15,
|
558 |
+
interactive=False,
|
559 |
+
elem_classes=["context-box"]
|
560 |
+
)
|
561 |
+
|
562 |
+
storage_info = gr.Textbox(
|
563 |
+
label="Memory Storage Info",
|
564 |
+
lines=3,
|
565 |
+
interactive=False
|
566 |
+
)
|
567 |
+
|
568 |
+
with gr.Row():
|
569 |
+
with gr.Column():
|
570 |
+
gr.HTML("""
|
571 |
+
<div style="margin-top: 20px; padding: 15px; background-color: #e8f4f8; border-radius: 8px;">
|
572 |
+
<h3>π§ Configuration</h3>
|
573 |
+
<p><strong>Pinecone:</strong> β
Auto-configured with integrated inference</p>
|
574 |
+
<p><strong>Embedding Model:</strong> multilingual-e5-large (1024 dimensions)</p>
|
575 |
+
<p><strong>Reranking Model:</strong> pinecone-rerank-v0</p>
|
576 |
+
<p><strong>OpenRouter:</strong> Set <code>OPENROUTER_API_KEY</code> environment variable</p>
|
577 |
+
<br>
|
578 |
+
<p><strong>π Pinecone Integrated Inference Features:</strong></p>
|
579 |
+
<ul>
|
580 |
+
<li>π§ Automatic text-to-vector conversion during upsert and search</li>
|
581 |
+
<li>π Smart retrieval with multilingual embeddings</li>
|
582 |
+
<li>π Advanced reranking for improved relevance</li>
|
583 |
+
<li>π Learning and improvement over time</li>
|
584 |
+
<li>π Unique environment creation for each session</li>
|
585 |
+
<li>β‘ Single API for embedding, storage, and retrieval</li>
|
586 |
+
</ul>
|
587 |
+
<br>
|
588 |
+
<p><strong>Model Options:</strong></p>
|
589 |
+
<ul>
|
590 |
+
<li><code>multilingual-e5-large</code> - Multilingual embeddings (default)</li>
|
591 |
+
<li><code>pinecone-rerank-v0</code> - Pinecone's reranking model (default)</li>
|
592 |
+
<li><code>cohere-rerank-v3.5</code> - Cohere's reranking model</li>
|
593 |
+
<li><code>pinecone-sparse-english-v0</code> - Sparse embeddings for keyword search</li>
|
594 |
+
</ul>
|
595 |
+
</div>
|
596 |
+
""")
|
597 |
+
|
598 |
+
# Event handlers
|
599 |
+
def respond(message, history):
|
600 |
+
if not message:
|
601 |
+
return history, "", "", ""
|
602 |
+
|
603 |
+
# Get AI response
|
604 |
+
ai_response, context_used, storage_info_text = chat_with_rag(message, history)
|
605 |
+
|
606 |
+
# Update history
|
607 |
+
if history is None:
|
608 |
+
history = []
|
609 |
+
history.append((message, ai_response))
|
610 |
+
|
611 |
+
return history, "", context_used, storage_info_text
|
612 |
+
|
613 |
+
# Wire up the interface
|
614 |
+
send_btn.click(
|
615 |
+
respond,
|
616 |
+
inputs=[msg, chatbot],
|
617 |
+
outputs=[chatbot, msg, context_display, storage_info]
|
618 |
+
)
|
619 |
+
|
620 |
+
msg.submit(
|
621 |
+
respond,
|
622 |
+
inputs=[msg, chatbot],
|
623 |
+
outputs=[chatbot, msg, context_display, storage_info]
|
624 |
+
)
|
625 |
+
|
626 |
+
clear_btn.click(
|
627 |
+
clear_conversation,
|
628 |
+
outputs=[chatbot, msg, context_display, storage_info]
|
629 |
+
)
|
630 |
+
|
631 |
+
refresh_status_btn.click(
|
632 |
+
get_system_status,
|
633 |
+
outputs=[status_display]
|
634 |
+
)
|
635 |
+
|
636 |
+
# Launch the app
|
637 |
+
if __name__ == "__main__":
|
638 |
+
demo.launch(
|
639 |
+
share=True,
|
640 |
+
server_name="0.0.0.0",
|
641 |
+
server_port=7860
|
642 |
+
)
|