Spaces:
Running
Running
File size: 13,935 Bytes
a8b6a3f b421bc5 d3fa801 a8b6a3f d1369a2 9eda2f5 d1369a2 a8b6a3f b421bc5 d1369a2 9bd9b48 b421bc5 d1369a2 a8b6a3f b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 b421bc5 d3fa801 a8b6a3f 9eda2f5 a8b6a3f b421bc5 a8b6a3f 0ed953a a8b6a3f d1369a2 a8b6a3f f89cae0 0ed953a a8b6a3f 0ed953a 8fe9801 9eda2f5 0ed953a a8b6a3f 65fefb5 a8b6a3f b421bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import polars as pl
import os
from tqdm.auto import tqdm
import pykakasi
from huggingface_hub import snapshot_download
import numpy as np
from string import ascii_letters
from convert import (
aux_global_id_to_code, presult,
team_name_short,
ball_kind, ball_kind_code, general_ball_kind, general_ball_kind_code, lr,
game_kind
)
DATA_PATH = snapshot_download(
repo_id='Ramos-Ramos/npb_data_app',
repo_type='dataset',
local_dir='./files',
cache_dir='./.cache',
allow_patterns=['*/pbp_data.parquet', '*/pbp_text.parquet', '*/pbp_aux.parquet', '*/schedule.parquet', '*/aux_schedule.parquet', 'players.parquet', 'players_translated.parquet', 'players_translated_manual.parquet']
)
SEASONS = [2021, 2022, 2023, 2024, 2025]
data_df = pl.DataFrame()
text_df = pl.DataFrame()
aux_df = pl.DataFrame()
sched_df = pl.DataFrame()
aux_sched_df = pl.DataFrame()
for season in tqdm(SEASONS):
_data_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_data.parquet'))
data_df = pl.concat((data_df, _data_df))
_text_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_text.parquet'))
text_df = pl.concat((text_df, _text_df))
_aux_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_aux.parquet'))
aux_df = pl.concat((aux_df, _aux_df), how='diagonal_relaxed')
_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'schedule.parquet'))
sched_df = pl.concat((sched_df, _sched_df))
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet'))
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df))
def select_name(names):
'''
When given mutiple names,
prioritizes the name with ASCII characters (ex. R. マルティネス > マルティネス),
followed by the shorter name (ex. 大勢 > 翁田 大勢)
Names with ASCII characters help differentiate between foreign players,
whlie shorter names are more accurate for players going by shorter names
'''
lens = []
for name in names:
if any([char in ascii_letters for char in name]):
return name
else:
lens.append(len(name))
return names[np.argmin(lens).item()]
# load player dfs
players_df = (
pl.read_parquet('files/players.parquet')
.with_columns(pl.col('playerName').str.normalize('NFKC').str.replace_all('・', ' '))
.group_by('playerId').agg(pl.col('playerName').map_elements(select_name, return_dtype=pl.String))
)
translated_df = (
pl.read_parquet('files/players_translated.parquet')
.with_columns(pl.col('name_jp').str.normalize('NFKC').str.replace_all('・', ' '))
)
manual_translated_df = pl.read_parquet('files/players_translated_manual.parquet')
# names with no romanization are approximated with kana translation
kks = pykakasi.kakasi()
# take names in parenthesis when they contain an ascii character
translated_df = (
translated_df
.with_columns(
pl.when(pl.col('name_jp').str.contains(r'\('))
.then(pl.col('name_jp').str.extract(r'.*\(', 0).str.strip_chars_end(' ('))
.otherwise(pl.col('name_jp'))
.str.replace_all('・', ' ')
.alias('name_jp')
)
.with_columns(pl.col('name_kana').str.normalize('NFKC').str.replace_all('・', ' '))
.with_columns(pl.col('name_kana').str.extract(r'\(.*\)', 0).str.strip_chars('()').alias('in_parentheses'))
.with_columns(pl.col('name_kana').str.extract(r'.*\(', 0).str.strip_chars_end('(').alias('before_parentheses'))
.with_columns(
pl.when(pl.col('name_en').is_null())
.then
(
pl.when(pl.col('in_parentheses').is_not_null() | pl.col('before_parentheses').is_not_null())
.then(
pl.when(pl.col('in_parentheses').map_elements(lambda name: any([char in ascii_letters for char in name]), pl.Boolean))
.then(pl.col('in_parentheses'))
.otherwise(pl.col('before_parentheses'))
)
.otherwise(pl.col('name_kana').map_elements(lambda name: ''.join([word['hepburn'].capitalize() for word in kks.convert(name)]), return_dtype=pl.String))
)
.otherwise(pl.col('name_en'))
.alias('name_en')
)
.with_columns(pl.col('name_en').str.replace_all(',', '').str.to_titlecase())
)
# handle inconsistent kanji between sources
for old_char, new_char in [
('崎', '﨑'),
('高', '髙'),
('徳', '德'),
('濱', '濵'),
('瀬', '瀨')
]:
players_df = (
players_df.with_columns(
pl.when(~pl.col('playerName').is_in(translated_df['name_jp']))
.then(pl.col('playerName').str.replace(old_char, new_char))
.otherwise('playerName')
)
)
# merge player dfs
players_df = (
players_df
.join(manual_translated_df.rename({'name_en': 'name_en_manual'}), on='playerId', how='left')
.join(
(
translated_df
.with_columns(
pl.when(pl.col('name_jp').str.contains(r'\.') & ~pl.col('name_jp').is_in(players_df.filter(pl.len().over('playerName') == 1)['playerName']))
.then(pl.col('name_jp').str.strip_chars(ascii_letters+'.'))
.otherwise('name_jp')
)
[['name_jp', 'name_en']]
),
left_on='playerName', right_on='name_jp', how='left'
)
.with_columns(pl.coalesce('name_en_manual', 'name_en').alias('name_en'))
.unique() # remove duplicates from names with multiple matches in other dataframes
.drop('name_en_manual', 'name_jp')
# .filter(pl.col('name_en').is_null())
)
aux_df = (
aux_df
.filter(pl.col('type') != 'RUNNER')
.join(aux_sched_df[['gameGlobalId', 'gameDate']], on='gameGlobalId')
.with_columns(
pl.col('gameDate').str.to_date().dt.strftime('%Y%m%d'),
pl.col('home').struct.field('globalId').replace_strict(aux_global_id_to_code).alias('home'),
pl.col('visitor').struct.field('globalId').replace_strict(aux_global_id_to_code).alias('visitor'),
pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')).alias('tob_code'),
)
.filter(
# pl.col('pitch').struct.field('count') > 0
# either one alone should be enough but let's use them together to be safe
~((pl.col('code') == 98) & (pl.col('id') == 1))
)
.with_columns(
(pl.col('pitch').struct.field('count') == 1).cum_sum().over(['gameGlobalId', 'inning', 'tob']).alias('pa_count')
)
.with_columns(
pl.col('code').is_in([6402, 6404, 6406, 6405]).any().over(['gameGlobalId', 'inning', 'tob', 'pa_count']).alias('ibb')
)
.with_columns(
pl.when(~pl.col('ibb')).then(pl.col('pitch').struct.field('count') == 1).cum_sum().over(['gameGlobalId', 'inning', 'tob']).alias('new_pa_count')
)
.with_columns(
pl.len().over(['gameGlobalId', 'inning', 'tob', 'new_pa_count']).alias('pa_pitches'),
pl.max('new_pa_count').over(['gameGlobalId', 'inning', 'tob']).alias('inning_pas')
)
.with_columns(
(
pl.col('gameDate') + '_' + \
pl.col('visitor') + '_' + \
pl.col('home') + '_' + \
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) + pl.col('new_pa_count').cast(pl.String).str.zfill(2) + '_' +\
pl.col('pitch').struct.field('count').cast(pl.String)
).alias('universal_code'),
(
pl.col('gameDate') + '_' + \
pl.col('visitor') + '_' + \
pl.col('home') + '_' + \
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2'))
).alias('inning_code'),
(
pl.col('gameDate') + '_' + \
pl.col('visitor') + '_' + \
pl.col('home') + '_' + \
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) + pl.col('new_pa_count').cast(pl.String).str.zfill(2)
).alias('pa_code')
)
)
data_df = (
data_df
.with_columns(
*[
pl.col(col).cast(pl.Int32)
for col
in ['gameId', 'ballKind', 'ballSpeed', 'x', 'y', 'presult', 'bresult', 'battedX', 'battedY']
],
pl.col('UpdatedAt').str.to_datetime(),
pl.col('fiveDigitSerialNumber').str.slice(offset=0, length=3).alias('half_inning'),
pl.col('fiveDigitSerialNumber').str.slice(offset=3, length=2).alias('batter'),
)
.with_columns(
# pl.count('ID').over(['gameId', 'fiveDigitSerialNumber']).alias('pa_pitches')
(~pl.col('presult').is_in([0])).sum().over(['gameId', 'fiveDigitSerialNumber']).alias('pa_pitches'),
pl.col('presult').is_in([139]).any().over(['gameId', 'fiveDigitSerialNumber']).alias('ibb')
)
.filter(
(pl.col('pa_pitches') > 0)
)
.with_columns(
pl.when(~pl.col('ibb')).then(pl.col('batter'))
)
.with_columns(
pl.when(~pl.col('ibb')).then(pl.col('batter').rank('dense')).over(['gameId', 'half_inning']).cast(pl.String).str.zfill(2).alias('new_batter')
)
.with_columns(
(pl.col('half_inning') + pl.col('new_batter')).alias('newFiveDigitSerialNumber')
)
.with_columns(pl.max('new_batter').cast(pl.Int32).over(['gameId', pl.col('newFiveDigitSerialNumber').str.slice(offset=0, length=3)]).alias('inning_pas'))
.join(
(
sched_df[['GameID', 'HomeTeamNameES', 'VisitorTeamNameES']]
.rename({'GameID': 'gameId'})
.with_columns(
pl.col('HomeTeamNameES').replace_strict(team_name_short).alias('home_team_name_short'),
pl.col('VisitorTeamNameES').replace_strict(team_name_short).alias('visitor_team_name_short')
)
),
on='gameId'
)
.with_columns(pl.col('UpdatedAt').dt.strftime('%Y%m%d').alias('date'))
.with_columns(
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber')).alias('universal_code') + '_' + pl.col('atBatBallCount'),
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber').str.slice(offset=0, length=3)).alias('inning_code'),
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber')).alias('pa_code')
)
.join(
(
aux_df.filter(~pl.col('ibb'))[['universal_code', 'battingResult', 'inning_pas', 'pa_pitches']]
.rename({'battingResult': 'aux_bresult', 'inning_pas': 'aux_inning_pas', 'pa_pitches': 'aux_pa_pitches'})
),
on='universal_code',
how='left'
)
.join(
players_df.rename({'name_en': 'pitcher_name'}), left_on='pitId', right_on='playerId', how='left'
)
.join(
text_df[['GameID', 'GameKindID']].with_columns(
pl.col('GameID').cast(pl.Int32),
pl.col('GameKindID').cast(pl.Int32),
).unique(),
how='left',
left_on='gameId',
right_on='GameID'
)
.with_columns(pl.col('GameKindID').replace_strict(game_kind).alias('GameKindName'))
.with_columns(
pl.when((pl.col('inning_pas') == pl.col('aux_inning_pas')) & (pl.col('pa_pitches') == pl.col('aux_pa_pitches')))
.then('aux_bresult')
.alias('aux_bresult'),
pl.col('x').add(-100).mul(-1),
pl.col('y').neg().add(250),
pl.col('presult').alias('presult_id'),
pl.col('ballKind').replace_strict(ball_kind),
pl.col('ballKind').replace_strict(ball_kind_code).alias('ballKind_code'),
pl.col('ballKind').replace_strict(general_ball_kind).alias('general_ballKind'),
pl.col('ballKind').replace_strict(general_ball_kind_code).alias('general_ballKind_code'),
pl.col('batLR').replace_strict(lr),
pl.col('pitLR').replace_strict(lr),
pl.col('date').str.to_date('%Y%m%d'),
pl.when(pl.col('GameKindName').str.contains('Regular Season') | (pl.col('GameKindName') == 'Interleague'))
.then(pl.lit('Regular Season'))
.when(~pl.col('GameKindName').is_in(['Spring Training', 'All-Star Game']))
.then(pl.lit('Postseason'))
.otherwise('GameKindName')
.alias('coarse_game_kind'),
pl.when(pl.col('half_inning').str.ends_with(1)).then('HomeTeamNameES').otherwise('VisitorTeamNameES').alias('pitcher_team'),
pl.when(pl.col('half_inning').str.ends_with(1)).then('home_team_name_short').otherwise('visitor_team_name_short').alias('pitcher_team_name_short')
)
.with_columns(
pl.col('presult_id').replace_strict(presult).alias('presult')
)
.with_columns(
pl.col('presult').is_in(['None', 'Balk', 'Batter interference', 'Catcher interference', 'Pitcher delay', 'Intentional walk', 'Unknown']).not_().alias('pitch'),
pl.col('presult').is_in(['Swinging strike', 'Swinging strikeout']).alias('whiff'),
)
.with_columns(
(pl.col('pitch') & pl.col('presult').is_in(['Hit by pitch', 'Sacrifice bunt', 'Sacrifice fly', 'Looking strike', 'Ball', 'Walk', 'Looking strikeout', 'Sacrifice hit error', 'Sacrifice fly error', "Sacrifice fielder's choice", 'Bunt strikeout']).not_()).alias('swing'),
(pl.col('whiff') | pl.col('presult').is_in(['Looking strike', 'Uncaught third strike', 'Looking strikeout'])).alias('csw')
)
.with_columns((pl.col('x').is_between(-60, 60) & pl.col('y').is_between(50, 50+150)).alias('zone'))
.with_columns((pl.col('x').is_between(-40, 40) & pl.col('y').is_between(75, 75+100)).alias('heart'))
.with_columns((pl.col('x').is_between(-80, 80) & pl.col('y').is_between(25, 25+200) & ~pl.col('heart')).alias('shadow'))
.with_columns((pl.col('x').is_between(-100, 101) & pl.col('y').is_between(0, 0+251) & ~pl.col('heart') & ~pl.col('shadow')).alias('chase'))
)
if __name__ == '__main__':
breakpoint()
|