|
import streamlit as st |
|
import requests |
|
from fpdf import FPDF |
|
import os |
|
from dotenv import load_dotenv |
|
from datetime import datetime |
|
import zipfile |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.llms import HuggingFacePipeline |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
|
|
|
|
|
|
if not os.path.exists(".streamlit"): |
|
with zipfile.ZipFile(".streamlit.zip", 'r') as zip_ref: |
|
zip_ref.extractall(".") |
|
|
|
|
|
load_dotenv() |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
|
|
model_id = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") |
|
|
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2048, temperature=0.7) |
|
|
|
|
|
llm = HuggingFacePipeline(pipeline=pipe) |
|
|
|
|
|
if "memory" not in st.session_state: |
|
st.session_state.memory = ConversationBufferMemory() |
|
if "conversation" not in st.session_state: |
|
st.session_state.conversation = ConversationChain( |
|
llm=llm, |
|
memory=st.session_state.memory, |
|
verbose=False |
|
) |
|
|
|
|
|
def save_trip_plan_as_pdf(text, filename="trip_plan.pdf"): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", size=12) |
|
safe_text = text.encode('latin-1', 'ignore').decode('latin-1') |
|
pdf.multi_cell(0, 10, safe_text) |
|
pdf.output(filename) |
|
|
|
|
|
st.set_page_config(page_title="Intelligent Travel Planner", layout="wide") |
|
st.title("π§³ Intelligent Travel Planner Agent") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
from_location = st.text_input("π Your Current Location", placeholder="e.g., Mumbai") |
|
destination = st.text_input("π Destination", placeholder="e.g., Manali") |
|
start_date = st.date_input("π
Start Date") |
|
with col2: |
|
end_date = st.date_input("π
End Date") |
|
budget = st.text_input("π° Budget (in INR)", placeholder="e.g., 5000") |
|
preferences = st.text_input("π― Preferences", placeholder="e.g., Adventure, Culture, Beaches") |
|
|
|
generate_button = st.button("βοΈ Generate Trip Plan") |
|
|
|
|
|
if generate_button: |
|
if from_location and destination and budget and preferences and start_date and end_date: |
|
user_prompt = ( |
|
f"Create a detailed,day-wise travel itinerary for a trip from {from_location} to {destination}." |
|
f"The trip should start on {start_date.strftime('%B %d, %Y')} and end on {end_date.strftime('%B %d, %Y')}, " |
|
f"with a total budget of βΉ{budget} INR. The traveller prefers a trip with the theme:{preferences.lower()}.\n" |
|
f"Provide a **day-wise breakdown** of the trip including:\n" |
|
f"- Top tourist attractions\n" |
|
f"- Recommended local food\n" |
|
f"- Suggested places to visit(such as markets,museums,temples etc.)\n" |
|
f"End with final tips for the trip." |
|
) |
|
|
|
with st.spinner("π§ Generating trip itinerary..."): |
|
ai_response = st.session_state.conversation.run(user_prompt) |
|
|
|
st.subheader("π Your AI-Generated Trip Itinerary") |
|
st.write(ai_response) |
|
|
|
save_trip_plan_as_pdf(ai_response) |
|
with open("trip_itinerary.pdf", "rb") as f: |
|
st.download_button("π Download as PDF", f, file_name="trip_plan.pdf") |
|
|
|
else: |
|
st.warning("π¨ Please fill out all fields above.") |
|
|
|
|
|
st.markdown("---") |
|
st.subheader("π¬ Ask Follow-Up Questions") |
|
follow_up = st.text_input("Ask a follow-up about your trip plan") |
|
|
|
if follow_up: |
|
with st.spinner("π‘ Thinking..."): |
|
response = st.session_state.conversation.run(user_prompt+"Also,"+follow_up) |
|
st.write("Sure,here is your updated travel itinerary: \n"+response) |
|
|
|
|