Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,97 @@
|
|
1 |
-
# Importing libraries
|
2 |
-
import pandas as pd
|
3 |
-
import json
|
4 |
import gradio as gr
|
5 |
from pathlib import Path
|
6 |
-
from ragatouille import RAGPretrainedModel
|
7 |
-
from gradio_client import Client
|
8 |
from tempfile import NamedTemporaryFile
|
9 |
from sentence_transformers import CrossEncoder
|
10 |
import numpy as np
|
11 |
from time import perf_counter
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
from
|
16 |
-
|
17 |
-
|
18 |
-
TEXT_COLUMN_NAME = "text"
|
19 |
-
proj_dir = Path.cwd()
|
20 |
|
21 |
# Set up logging
|
22 |
-
import logging
|
23 |
logging.basicConfig(level=logging.INFO)
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
quiz_data = None
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
def json_to_excel(output_json):
|
39 |
-
# Initialize list for DataFrame
|
40 |
data = []
|
41 |
gr.Warning('Generating Shareable file link..', duration=30)
|
42 |
-
for i in
|
43 |
-
question_key = f"Q{i}"
|
44 |
-
answer_key = f"A{i}"
|
45 |
-
|
46 |
-
question = output_json.get(question_key, '')
|
47 |
-
correct_answer_key = output_json.get(answer_key, '')
|
48 |
-
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
49 |
-
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
50 |
-
|
51 |
-
# Extract options
|
52 |
-
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
53 |
-
options = [output_json.get(key, '') for key in option_keys]
|
54 |
-
|
55 |
-
# Add data row
|
56 |
data.append([
|
57 |
-
question,
|
58 |
-
"Multiple Choice",
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
correct_answer,
|
65 |
-
30,
|
66 |
-
''
|
67 |
])
|
68 |
-
|
69 |
-
# Create DataFrame
|
70 |
df = pd.DataFrame(data, columns=[
|
71 |
-
"Question Text",
|
72 |
-
"Question Type",
|
73 |
-
"Option 1",
|
74 |
-
"Option 2",
|
75 |
-
"Option 3",
|
76 |
-
"Option 4",
|
77 |
-
"Option 5",
|
78 |
-
"Correct Answer",
|
79 |
-
"Time in seconds",
|
80 |
-
"Image Link"
|
81 |
])
|
82 |
-
|
83 |
-
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
84 |
df.to_excel(temp_file.name, index=False)
|
85 |
return temp_file.name
|
86 |
-
# Define a colorful theme
|
87 |
-
colorful_theme = gr.themes.Default(
|
88 |
-
primary_hue="cyan", # Set a bright cyan as primary color
|
89 |
-
secondary_hue="yellow", # Set a bright magenta as secondary color
|
90 |
-
neutral_hue="purple" # Optionally set a neutral color
|
91 |
-
|
92 |
-
)
|
93 |
|
94 |
-
|
|
|
95 |
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
96 |
-
|
97 |
-
|
98 |
-
# Create a single row for the HTML and Image
|
99 |
with gr.Row():
|
100 |
with gr.Column(scale=2):
|
101 |
gr.Image(value='logo.png', height=200, width=200)
|
@@ -104,127 +100,294 @@ with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
|
104 |
<center>
|
105 |
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
|
106 |
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
107 |
-
<i>⚠️ Students can create quiz from any topic from
|
108 |
</center>
|
109 |
""")
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
|
115 |
|
|
|
116 |
with gr.Row():
|
117 |
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
118 |
-
model_radio = gr.Radio(choices=[
|
119 |
-
value='(ACCURATE) BGE reranker', label="Embeddings",
|
120 |
-
info="First query to ColBERT may take a little time")
|
121 |
|
122 |
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
123 |
-
quiz_msg = gr.Textbox()
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg
|
128 |
def generate_quiz(question_difficulty, topic, cross_encoder):
|
129 |
top_k_rank = 10
|
130 |
documents = []
|
131 |
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
documents = [item['content'] for item in documents_full]
|
139 |
-
|
140 |
-
else:
|
141 |
-
document_start = perf_counter()
|
142 |
-
query_vec = retriever.encode(topic)
|
143 |
-
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
144 |
-
|
145 |
-
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
146 |
-
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
147 |
-
|
148 |
query_doc_pair = [[topic, doc] for doc in documents]
|
149 |
-
|
150 |
-
# if cross_encoder == '(FAST) MiniLM-L6v2':
|
151 |
-
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
152 |
-
if cross_encoder == '(ACCURATE) BGE reranker':
|
153 |
-
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
154 |
-
|
155 |
cross_scores = cross_encoder1.predict(query_doc_pair)
|
156 |
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
157 |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
|
185 |
-
|
186 |
-
|
187 |
|
188 |
-
|
189 |
-
|
190 |
|
191 |
-
|
192 |
-
|
193 |
|
194 |
-
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
|
202 |
-
|
203 |
-
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
|
217 |
-
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
-
|
227 |
|
228 |
-
QUIZBOT.queue()
|
229 |
-
QUIZBOT.launch(debug=True)
|
230 |
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from pathlib import Path
|
|
|
|
|
3 |
from tempfile import NamedTemporaryFile
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
import numpy as np
|
6 |
from time import perf_counter
|
7 |
+
import pandas as pd
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
from phi.agent import Agent
|
10 |
+
from phi.model.groq import Groq
|
11 |
+
import os
|
12 |
+
import logging
|
|
|
|
|
13 |
|
14 |
# Set up logging
|
|
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
# API Key setup
|
19 |
+
api_key = os.getenv("GROQ_API_KEY")
|
20 |
+
if not api_key:
|
21 |
+
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
|
22 |
+
logger.error("GROQ_API_KEY not found.")
|
23 |
+
else:
|
24 |
+
os.environ["GROQ_API_KEY"] = api_key
|
25 |
+
|
26 |
+
# Pydantic Model for Quiz Structure
|
27 |
+
class QuizItem(BaseModel):
|
28 |
+
question: str = Field(..., description="The quiz question")
|
29 |
+
choices: list[str] = Field(..., description="List of 4 multiple-choice options")
|
30 |
+
correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")
|
31 |
+
|
32 |
+
class QuizOutput(BaseModel):
|
33 |
+
items: list[QuizItem] = Field(..., description="List of 10 quiz items")
|
34 |
+
|
35 |
+
# Initialize Agents
|
36 |
+
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)
|
37 |
+
|
38 |
+
quiz_generator = Agent(
|
39 |
+
name="Quiz Generator",
|
40 |
+
role="Generates structured quiz questions and answers",
|
41 |
+
instructions=[
|
42 |
+
"Create 10 questions with 4 choices each based on the provided topic and documents.",
|
43 |
+
"Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
|
44 |
+
"Ensure questions are derived only from the provided documents.",
|
45 |
+
"Return the output in a structured format using the QuizOutput Pydantic model.",
|
46 |
+
"Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
|
47 |
+
],
|
48 |
+
model=Groq(id="llama3-70b-8192", api_key=api_key),
|
49 |
+
response_model=QuizOutput,
|
50 |
+
markdown=True
|
51 |
+
)
|
52 |
|
53 |
+
VECTOR_COLUMN_NAME = "vector"
|
54 |
+
TEXT_COLUMN_NAME = "text"
|
55 |
+
proj_dir = Path.cwd()
|
56 |
|
57 |
+
# Calling functions from backend (assuming they exist)
|
58 |
+
from backend.semantic_search import table, retriever
|
|
|
59 |
|
60 |
+
def generate_quiz_data(question_difficulty, topic, documents_str):
|
61 |
+
prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
|
62 |
+
try:
|
63 |
+
response = quiz_generator.run(prompt)
|
64 |
+
return response.content
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Failed to generate quiz: {e}")
|
67 |
+
return None
|
68 |
|
69 |
+
def json_to_excel(quiz_data):
|
|
|
|
|
70 |
data = []
|
71 |
gr.Warning('Generating Shareable file link..', duration=30)
|
72 |
+
for i, item in enumerate(quiz_data.items, 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
data.append([
|
74 |
+
item.question,
|
75 |
+
"Multiple Choice",
|
76 |
+
item.choices[0],
|
77 |
+
item.choices[1],
|
78 |
+
item.choices[2],
|
79 |
+
item.choices[3],
|
80 |
+
'', # Option 5 (empty)
|
81 |
+
item.correct_answer.replace('C', ''),
|
82 |
+
30,
|
83 |
+
''
|
84 |
])
|
|
|
|
|
85 |
df = pd.DataFrame(data, columns=[
|
86 |
+
"Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
])
|
88 |
+
temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
|
|
|
89 |
df.to_excel(temp_file.name, index=False)
|
90 |
return temp_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")
|
93 |
+
|
94 |
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
|
|
|
|
|
|
95 |
with gr.Row():
|
96 |
with gr.Column(scale=2):
|
97 |
gr.Image(value='logo.png', height=200, width=200)
|
|
|
100 |
<center>
|
101 |
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
|
102 |
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
103 |
+
<i>⚠️ Students can create quiz from any topic from 9th Science and evaluate themselves! ⚠️</i>
|
104 |
</center>
|
105 |
""")
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science CBSE")
|
108 |
with gr.Row():
|
109 |
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
110 |
+
model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings") # Removed ColBERT option
|
|
|
|
|
111 |
|
112 |
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
113 |
+
quiz_msg = gr.Textbox(label="Status", interactive=False)
|
114 |
+
question_display = gr.HTML(visible=False)
|
115 |
+
download_excel = gr.File(label="Download Excel")
|
116 |
|
117 |
+
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg, question_display, download_excel])
|
118 |
def generate_quiz(question_difficulty, topic, cross_encoder):
|
119 |
top_k_rank = 10
|
120 |
documents = []
|
121 |
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
122 |
|
123 |
+
document_start = perf_counter()
|
124 |
+
query_vec = retriever.encode(topic)
|
125 |
+
documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
|
126 |
+
if cross_encoder == '(ACCURATE) BGE reranker':
|
127 |
+
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
query_doc_pair = [[topic, doc] for doc in documents]
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
cross_scores = cross_encoder1.predict(query_doc_pair)
|
130 |
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
131 |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
132 |
|
133 |
+
documents_str = '\n'.join(documents)
|
134 |
+
quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
|
135 |
+
if not quiz_data or not quiz_data.items:
|
136 |
+
return ["Error: Failed to generate quiz.", gr.HTML(visible=False), None]
|
137 |
+
|
138 |
+
excel_file = json_to_excel(quiz_data)
|
139 |
+
html_content = "<div>" + "".join(f"<h3>{i}. {item.question}</h3><p>{'<br>'.join(item.choices)}</p>" for i, item in enumerate(quiz_data.items[:10], 1)) + "</div>"
|
140 |
+
return ["Quiz Generated!", gr.HTML(value=html_content, visible=True), excel_file]
|
141 |
+
|
142 |
+
check_button = gr.Button("Check Score")
|
143 |
+
score_textbox = gr.Markdown()
|
144 |
+
|
145 |
+
@check_button.click(inputs=question_display, outputs=score_textbox)
|
146 |
+
def compare_answers(html_content):
|
147 |
+
if not quiz_data or not quiz_data.items:
|
148 |
+
return "Please generate a quiz first."
|
149 |
+
# Placeholder for user answers (adjust based on actual UI implementation)
|
150 |
+
user_answers = [] # Implement parsing logic if using radio inputs
|
151 |
+
correct_answers = [item.correct_answer for item in quiz_data.items[:10]]
|
152 |
+
score = sum(1 for u, c in zip(user_answers, correct_answers) if u == c)
|
153 |
+
if score > 7:
|
154 |
+
message = f"### Excellent! You got {score} out of 10!"
|
155 |
+
elif score > 5:
|
156 |
+
message = f"### Good! You got {score} out of 10!"
|
157 |
+
else:
|
158 |
+
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
159 |
+
return message
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
QUIZBOT.queue().launch(debug=True)
|
163 |
+
|
164 |
+
# # Importing libraries
|
165 |
+
# import pandas as pd
|
166 |
+
# import json
|
167 |
+
# import gradio as gr
|
168 |
+
# from pathlib import Path
|
169 |
+
# from ragatouille import RAGPretrainedModel
|
170 |
+
# from gradio_client import Client
|
171 |
+
# from tempfile import NamedTemporaryFile
|
172 |
+
# from sentence_transformers import CrossEncoder
|
173 |
+
# import numpy as np
|
174 |
+
# from time import perf_counter
|
175 |
+
# from sentence_transformers import CrossEncoder
|
176 |
+
|
177 |
+
# #calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
|
178 |
+
# from backend.semantic_search import table, retriever
|
179 |
+
|
180 |
+
# VECTOR_COLUMN_NAME = "vector"
|
181 |
+
# TEXT_COLUMN_NAME = "text"
|
182 |
+
# proj_dir = Path.cwd()
|
183 |
+
|
184 |
+
# # Set up logging
|
185 |
+
# import logging
|
186 |
+
# logging.basicConfig(level=logging.INFO)
|
187 |
+
# logger = logging.getLogger(__name__)
|
188 |
+
|
189 |
+
# # Replace Mixtral client with Qwen Client
|
190 |
+
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
191 |
+
|
192 |
+
# def system_instructions(question_difficulty, topic, documents_str):
|
193 |
+
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
|
194 |
+
|
195 |
+
# # Ragatouille database for Colbert ie highly accurate mode
|
196 |
+
# RAG_db = gr.State()
|
197 |
+
# quiz_data = None
|
198 |
+
|
199 |
+
|
200 |
+
# #defining a function to convert json file to excel file
|
201 |
+
# def json_to_excel(output_json):
|
202 |
+
# # Initialize list for DataFrame
|
203 |
+
# data = []
|
204 |
+
# gr.Warning('Generating Shareable file link..', duration=30)
|
205 |
+
# for i in range(1, 11): # Assuming there are 10 questions
|
206 |
+
# question_key = f"Q{i}"
|
207 |
+
# answer_key = f"A{i}"
|
208 |
+
|
209 |
+
# question = output_json.get(question_key, '')
|
210 |
+
# correct_answer_key = output_json.get(answer_key, '')
|
211 |
+
# #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
212 |
+
# correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
213 |
+
|
214 |
+
# # Extract options
|
215 |
+
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
216 |
+
# options = [output_json.get(key, '') for key in option_keys]
|
217 |
+
|
218 |
+
# # Add data row
|
219 |
+
# data.append([
|
220 |
+
# question, # Question Text
|
221 |
+
# "Multiple Choice", # Question Type
|
222 |
+
# options[0], # Option 1
|
223 |
+
# options[1], # Option 2
|
224 |
+
# options[2] if len(options) > 2 else '', # Option 3
|
225 |
+
# options[3] if len(options) > 3 else '', # Option 4
|
226 |
+
# options[4] if len(options) > 4 else '', # Option 5
|
227 |
+
# correct_answer, # Correct Answer
|
228 |
+
# 30, # Time in seconds
|
229 |
+
# '' # Image Link
|
230 |
+
# ])
|
231 |
+
|
232 |
+
# # Create DataFrame
|
233 |
+
# df = pd.DataFrame(data, columns=[
|
234 |
+
# "Question Text",
|
235 |
+
# "Question Type",
|
236 |
+
# "Option 1",
|
237 |
+
# "Option 2",
|
238 |
+
# "Option 3",
|
239 |
+
# "Option 4",
|
240 |
+
# "Option 5",
|
241 |
+
# "Correct Answer",
|
242 |
+
# "Time in seconds",
|
243 |
+
# "Image Link"
|
244 |
+
# ])
|
245 |
+
|
246 |
+
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
247 |
+
# df.to_excel(temp_file.name, index=False)
|
248 |
+
# return temp_file.name
|
249 |
+
# # Define a colorful theme
|
250 |
+
# colorful_theme = gr.themes.Default(
|
251 |
+
# primary_hue="cyan", # Set a bright cyan as primary color
|
252 |
+
# secondary_hue="yellow", # Set a bright magenta as secondary color
|
253 |
+
# neutral_hue="purple" # Optionally set a neutral color
|
254 |
+
|
255 |
+
# )
|
256 |
+
|
257 |
+
# #gradio app creation for a user interface
|
258 |
+
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
259 |
+
|
260 |
+
|
261 |
+
# # Create a single row for the HTML and Image
|
262 |
+
# with gr.Row():
|
263 |
+
# with gr.Column(scale=2):
|
264 |
+
# gr.Image(value='logo.png', height=200, width=200)
|
265 |
+
# with gr.Column(scale=6):
|
266 |
+
# gr.HTML("""
|
267 |
+
# <center>
|
268 |
+
# <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
|
269 |
+
# <h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
270 |
+
# <i>⚠️ Students can create quiz from any topic from 10 science and evaluate themselves! ⚠️</i>
|
271 |
+
# </center>
|
272 |
+
# """)
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
|
278 |
+
|
279 |
+
# with gr.Row():
|
280 |
+
# difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
281 |
+
# model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
|
282 |
+
# value='(ACCURATE) BGE reranker', label="Embeddings",
|
283 |
+
# info="First query to ColBERT may take a little time")
|
284 |
+
|
285 |
+
# generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
286 |
+
# quiz_msg = gr.Textbox()
|
287 |
+
|
288 |
+
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
289 |
+
|
290 |
+
# @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
|
291 |
+
# def generate_quiz(question_difficulty, topic, cross_encoder):
|
292 |
+
# top_k_rank = 10
|
293 |
+
# documents = []
|
294 |
+
# gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
295 |
+
|
296 |
+
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
297 |
+
# gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
|
298 |
+
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
299 |
+
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
300 |
+
# documents_full = RAG_db.value.search(topic, k=top_k_rank)
|
301 |
+
# documents = [item['content'] for item in documents_full]
|
302 |
+
|
303 |
+
# else:
|
304 |
+
# document_start = perf_counter()
|
305 |
+
# query_vec = retriever.encode(topic)
|
306 |
+
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
307 |
+
|
308 |
+
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
309 |
+
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
310 |
+
|
311 |
+
# query_doc_pair = [[topic, doc] for doc in documents]
|
312 |
+
|
313 |
+
# # if cross_encoder == '(FAST) MiniLM-L6v2':
|
314 |
+
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
315 |
+
# if cross_encoder == '(ACCURATE) BGE reranker':
|
316 |
+
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
317 |
|
318 |
+
# cross_scores = cross_encoder1.predict(query_doc_pair)
|
319 |
+
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
320 |
+
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
321 |
+
|
322 |
+
# #creating a text prompt to Qwen model combining the documents and system instruction
|
323 |
+
# formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
|
324 |
+
# print(' Formatted Prompt : ' ,formatted_prompt)
|
325 |
+
# try:
|
326 |
+
# response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
|
327 |
+
# response1 = response[1][0][1]
|
328 |
+
|
329 |
+
# # Extract JSON
|
330 |
+
# start_index = response1.find('{')
|
331 |
+
# end_index = response1.rfind('}')
|
332 |
+
# cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
|
333 |
+
# print('Cleaned Response :',cleaned_response)
|
334 |
+
# output_json = json.loads(cleaned_response)
|
335 |
+
# # Assign the extracted JSON to quiz_data for use in the comparison function
|
336 |
+
# global quiz_data
|
337 |
+
# quiz_data = output_json
|
338 |
+
# # Generate the Excel file
|
339 |
+
# excel_file = json_to_excel(output_json)
|
340 |
|
341 |
|
342 |
+
# #Create a Quiz display in app
|
343 |
+
# question_radio_list = []
|
344 |
+
# for question_num in range(1, 11):
|
345 |
+
# question_key = f"Q{question_num}"
|
346 |
+
# answer_key = f"A{question_num}"
|
347 |
|
348 |
+
# question = output_json.get(question_key)
|
349 |
+
# answer = output_json.get(output_json.get(answer_key))
|
350 |
|
351 |
+
# if not question or not answer:
|
352 |
+
# continue
|
353 |
|
354 |
+
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
355 |
+
# choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
356 |
|
357 |
+
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
358 |
+
# question_radio_list.append(radio)
|
359 |
|
360 |
+
# return ['Quiz Generated!'] + question_radio_list + [excel_file]
|
361 |
|
362 |
+
# except json.JSONDecodeError as e:
|
363 |
+
# print(f"Failed to decode JSON: {e}")
|
364 |
|
365 |
+
# check_button = gr.Button("Check Score")
|
366 |
+
# score_textbox = gr.Markdown()
|
367 |
|
368 |
+
# @check_button.click(inputs=question_radios, outputs=score_textbox)
|
369 |
+
# def compare_answers(*user_answers):
|
370 |
+
# user_answer_list = list(user_answers)
|
371 |
+
# answers_list = []
|
372 |
|
373 |
+
# for question_num in range(1, 11):
|
374 |
+
# answer_key = f"A{question_num}"
|
375 |
+
# answer = quiz_data.get(quiz_data.get(answer_key))
|
376 |
+
# if not answer:
|
377 |
+
# break
|
378 |
+
# answers_list.append(answer)
|
379 |
|
380 |
+
# score = sum(1 for item in user_answer_list if item in answers_list)
|
381 |
|
382 |
+
# if score > 7:
|
383 |
+
# message = f"### Excellent! You got {score} out of 10!"
|
384 |
+
# elif score > 5:
|
385 |
+
# message = f"### Good! You got {score} out of 10!"
|
386 |
+
# else:
|
387 |
+
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
388 |
|
389 |
+
# return message
|
390 |
|
391 |
+
# QUIZBOT.queue()
|
392 |
+
# QUIZBOT.launch(debug=True)
|
393 |
|