Spaces:
Running
Running
File size: 4,961 Bytes
281ee36 7e3b825 281ee36 5e2ccaa 281ee36 f3b4b95 64a08a8 28960ba ee92f11 83001c2 4c07abc fe989a0 508a421 eb08b08 fe989a0 281ee36 7e3b825 281ee36 7e3b825 9c4e9e4 281ee36 fe989a0 508a421 fe989a0 eb08b08 ee92f11 f3b4b95 64a08a8 28960ba 4c07abc fe989a0 281ee36 331b5a4 281ee36 7e3b825 281ee36 28960ba 281ee36 d189934 281ee36 28960ba 281ee36 28960ba 281ee36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
from textwrap import dedent
from typing import TypedDict, Annotated, Optional, Any, Callable, Sequence, Union
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage
from langchain_core.tools import BaseTool
from langchain_openai import ChatOpenAI
from langchain_tavily import TavilySearch
from langgraph.constants import START
from langgraph.errors import GraphRecursionError
from langgraph.graph import add_messages, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.pregel import PregelProtocol
from loguru import logger
from pydantic import SecretStr
from tools.excel_to_text import excel_to_text
from tools.execute_python_code_from_file import execute_python_code_from_file
from tools.maths import add_integers
from tools.produce_classifier import produce_classifier
from tools.sort_words_alphabetically import sort_words_alphabetically
from tools.transcribe_audio import transcribe_audio
from tools.web_page_information_extractor import web_page_information_extractor
from tools.wikipedia_search import wikipedia_search
from tools.youtube_transcript import youtube_transcript
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
class ShrewdAgent:
message_system = dedent("""
You are a general AI assistant equipped with a suite of external tools. Your task is to
answer the following question as accurately and helpfully as possible by using the tools
provided. Do not write or execute code yourself. For any operation requiring computation,
data retrieval, or external access, explicitly invoke the appropriate tool.
Follow these guidelines:
- Clearly explain your reasoning step by step.
- Justify your choice of tool(s) at each step.
- If multiple interpretations are possible, outline them and explain your reasoning for selecting one.
- If the answer requires external data or inference, retrieve or deduce it via the available tools.
Important: Your final output MUST be only a number or a word with no additional text or explanation,
unless the response format is explicitly specified in the question. Do not include reasoning,
commentary, or any other content beyond the requested answer.""")
def __init__(self):
self.tools = [
TavilySearch(),
wikipedia_search,
web_page_information_extractor,
youtube_transcript,
produce_classifier,
sort_words_alphabetically,
excel_to_text,
execute_python_code_from_file,
add_integers,
transcribe_audio,
]
self.llm = ChatOpenAI(
model="gpt-4.1",
temperature=0,
api_key=SecretStr(os.environ['OPENAI_API_KEY'])
).bind_tools(self.tools)
def assistant_node(state: AgentState):
return {
"messages": [self.llm.invoke(state["messages"])],
}
self.agent = _build_state_graph(AgentState, assistant_node, self.tools)
logger.info(f"Agent initialized with tools: {[tool.name for tool in self.tools]}")
logger.debug(f"system message:\n{self.message_system}")
def __call__(self, question: str) -> str:
logger.info(f"Agent received question:\n{question}")
accumulated_response = []
try:
for chunk in self.agent.stream(
{"messages": [
SystemMessage(self.message_system),
HumanMessage(question, )
]},
{"recursion_limit": 18},
):
assistant = chunk.get("assistant")
if assistant:
logger.debug(f"\n{assistant.get('messages')[0].pretty_repr()}")
tools = chunk.get("tools")
if tools:
logger.debug(f"\n{tools.get('messages')[0].pretty_repr()}")
accumulated_response.append(chunk)
except GraphRecursionError as e:
logger.error(f"GraphRecursionError: {e}")
final_answer = "I couldn't find the answer"
if accumulated_response[-1].get("assistant"):
final_answer = accumulated_response[-1]["assistant"]['messages'][-1].content
logger.info(f"Agent returning answer: {final_answer}")
return final_answer
def _build_state_graph(
state_schema: Optional[type[Any]],
assistant: Callable,
tools: Sequence[Union[BaseTool, Callable]]) -> PregelProtocol: # CompiledStateGraph:
return (StateGraph(state_schema)
.add_node("assistant", assistant)
.add_node("tools", ToolNode(tools))
.add_edge(START, "assistant")
.add_conditional_edges("assistant", tools_condition)
.add_edge("tools", "assistant")
.compile()
) |