File size: 1,436 Bytes
bcec9c2
 
 
 
 
 
 
bfc23da
bcec9c2
 
ae6d4ce
bcec9c2
 
 
 
 
f5f9b38
bcec9c2
61029d0
4f41410
199a7d9
 
 
4f41410
199a7d9
 
4f41410
199a7d9
 
 
 
 
 
 
 
 
 
bfc23da
 
 
 
 
 
 
 
199a7d9
 
 
4f41410
199a7d9
4f41410
5291ba9
 
 
 
 
 
 
 
 
 
 
bcec9c2
 
 
 
 
 
 
 
 
bfc23da
bcec9c2
bfc23da
 
 
bcec9c2
bfc23da
 
58f91b3
bcec9c2
 
58f91b3
bcec9c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
title: InferBench
emoji: 🥇
colorFrom: green
colorTo: indigo
sdk: gradio
app_file: dashboard/app.py
pinned: true
license: apache-2.0
short_description: A cost/quality/speed Leaderboard for Inference Providers!
app_build_command: pip install .
sdk_version: 5.19.0
tags:
- leaderboard
---

# InferBench

Evaluate the quality and efficiency of image gen api's.

## Installation

### Install dependencies

Install dependencies with conda like that:
```
conda env create -f environment.yml
```

### Install uv

Install uv with pip like that:

```
uv venv --python 3.12
```

Then activate the environment:

```
source .venv/bin/activate
```

Then install the dependencies with uv:

```
uv sync --all-groups
```

## Usage

Create .env file with all the credentials you will need.

This is how you can generate the images.
```
python sample.py replicate draw_bench genai_bench geneval hps parti
```

This is how you would evaluate the benchmarks once you have all images:
```
python evaluate.py replicate draw_bench genai_bench geneval hps parti
```

## Dashboard

To run the dashboard, you can use the following command:

```
python dashboard/app.py
```

To deploy the dashboard, you can use the following commands:

First, add the remote:

```
git remote add hf https://huggingface.co/spaces/PrunaAI/InferBench
```

Then push the changes of your branch to the remote:

```
git push hf $(git rev-parse --abbrev-ref HEAD):main --force
```