Spaces:
Running
Running
File size: 8,242 Bytes
bcec9c2 a71ac2d bcec9c2 a71ac2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
from pathlib import Path
import gradio as gr
import pandas as pd
from gradio_leaderboard import Leaderboard
custom_css = """
.logo {
width: 300px;
height: auto;
max-width: 100%;
margin: 0 auto;
object-fit: contain;
padding-bottom: 0;
}
.text {
font-size: 16px !important;
}
.tabs button {
font-size: 20px;
}
.subtabs button {
font-size: 20px;
}
h1, h2 {
margin: 0;
padding-top: 0;
}
"""
# override method to avoid bugg
Leaderboard.raise_error_if_incorrect_config = lambda self: None
abs_path = Path(__file__).parent / "data"
# Load the JSONL file into a pandas DataFrame using the json library
df = pd.read_json(abs_path / "text_to_image.jsonl", lines=True)
df["URL"] = df.apply(
lambda row: f'<a target="_blank" href="{row["URL"]}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>',
axis=1,
)
df = df[
[
"URL",
"Platform",
"Owner",
"Device",
"Model",
"Optimization",
"Median Inference Time",
"Price per Image",
]
+ [
col
for col in df.columns.tolist()
if col
not in [
"URL",
"Model",
"Median Inference Time",
"Price per Image",
"Platform",
"Owner",
"Device",
"Optimization",
]
]
]
df = df.sort_values(by="GenEval", ascending=False)
with gr.Blocks("ParityError/Interstellar", fill_width=True, css=custom_css) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<img src="https://huggingface.co/datasets/PrunaAI/documentation-images/resolve/main/inferbench/logo2-cropped.png" style="width: 200px; height: auto; max-width: 100%; margin: 0 auto;">
<h1>🏋️ InferBench 🏋️</h1>
<h2>A cost/quality/speed Leaderboard for Inference Providers!</h2>
</div>
"""
)
with gr.Tabs():
with gr.TabItem("Text-to-Image Leaderboard"):
Leaderboard(
value=df,
select_columns=df.columns.tolist(),
datatype=[
"markdown",
"markdown",
"markdown",
"markdown",
"markdown",
"markdown",
]
+ ["number"] * (len(df.columns.tolist()) - 6),
filter_columns=[
"Platform",
"Owner",
"Device",
"Model",
"Optimization",
],
)
gr.Markdown(
"""
> **💡 Note:** Each efficiency metric and quality metric captures only one dimension of model capacity. Rankings may vary when considering other metrics.
"""
)
with gr.TabItem("About"):
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# 📊 Text-to-Image Leaderboard
This leaderboard compares the performance of different text-to-image providers.
We started with a comprehensive benchmark comparing our very own FLUX-juiced with the “FLUX.1 [dev]” endpoints offered by:
- Replicate: https://replicate.com/black-forest-labs/flux-dev
- Fal: https://fal.ai/models/fal-ai/flux/dev
- Fireworks AI: https://fireworks.ai/models/fireworks/flux-1-dev-fp8
- Together AI: https://www.together.ai/models/flux-1-dev
We also included the following non-FLUX providers:
- AWS Nova Canvas: https://aws.amazon.com/ai/generative-ai/nova/creative/
All of these inference providers offer implementations but they don’t always communicate about the optimisation methods used in the background, and most endpoint have different response times and performance measures.
For comparison purposes we used the same generation set-up for all the providers.
- 28 inference steps
- 1024×1024 resolution
- Guidance scale of 3.5
- H100 GPU (80GB)—only reported by Replicate
Although we did test with this specific Pruna configuration and hardware, the applied compression methods work with different config and hardware too!
> We published a full blog post on [the creation of our FLUX-juiced endpoint](https://www.pruna.ai/blog/flux-juiced-the-fastest-image-generation-endpoint).
"""
)
with gr.Column():
gr.Markdown(
"""
# 🧃 FLUX.1-dev (juiced)
FLUX.1-dev (juiced) is our optimized version of FLUX.1-dev, delivering up to **2.6x faster inference** than the official Replicate API, **without sacrificing image quality**.
Under the hood, it uses a custom combination of:
- **Graph compilation** for optimized execution paths
- **Inference-time caching** for repeated operations
We won’t go deep into the internals here, but here’s the gist:
> We combine compiler-level execution graph optimization with selective caching of heavy operations (like attention layers), allowing inference to skip redundant computations without any loss in fidelity.
These techniques are generalized and plug-and-play via the **Pruna Pro** pipeline, and can be applied to nearly any diffusion-based image model—not just FLUX. For a free but still very juicy model you can use our open source solution.
> 🧪 Try FLUX-juiced now → [replicate.com/prunaai/flux.1-juiced](https://replicate.com/prunaai/flux.1-juiced)
## Sample Images
The prompts were randomly sampled from the [parti-prompts dataset](https://github.com/google-research/parti). The reported times represent the full duration of each API call.
> **For samples, check out the [Pruna Notion page](https://pruna.notion.site/FLUX-1-dev-vs-Pruna-s-FLUX-juiced-1d270a039e5f80c6a2a3c00fc0d75ef0)**
"""
)
with gr.Accordion("🌍 Join the Pruna AI community!", open=False):
gr.HTML(
"""
<a rel="nofollow" href="https://twitter.com/PrunaAI"><img alt="Twitter" src="https://img.shields.io/twitter/follow/PrunaAI?style=social"></a>
<a rel="nofollow" href="https://github.com/PrunaAI/pruna"><img alt="GitHub" src="https://img.shields.io/github/stars/prunaai/pruna"></a>
<a rel="nofollow" href="https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following"><img alt="LinkedIn" src="https://img.shields.io/badge/LinkedIn-Connect-blue"></a>
<a rel="nofollow" href="https://discord.com/invite/rskEr4BZJx"><img alt="Discord" src="https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord"></a>
<a rel="nofollow" href="https://www.reddit.com/r/PrunaAI/"><img alt="Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social"></a>
"""
)
with gr.Accordion("Citation", open=True):
gr.Markdown(
"""
```bibtex
@article{InferBench,
title={InferBench: A Leaderboard for Inference Providers},
author={PrunaAI},
year={2025},
howpublished={\\url{https://huggingface.co/spaces/PrunaAI/InferBench}}
}
```
"""
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|