Spaces:
Sleeping
Sleeping
implement UI and basic functions
Browse files
app.py
CHANGED
|
@@ -5,11 +5,12 @@ import mediapipe as mp
|
|
| 5 |
import os
|
| 6 |
|
| 7 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
|
|
|
| 8 |
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
| 9 |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
| 10 |
|
| 11 |
-
human_list = os.listdir(os.path.join(example_path, "
|
| 12 |
-
human_list_path = [os.path.join(example_path, "
|
| 13 |
|
| 14 |
# Initialize MediaPipe Pose
|
| 15 |
mp_pose = mp.solutions.pose
|
|
@@ -18,76 +19,65 @@ mp_drawing = mp.solutions.drawing_utils
|
|
| 18 |
mp_pose_landmark = mp_pose.PoseLandmark
|
| 19 |
|
| 20 |
|
| 21 |
-
def
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
result = pose.process(image_rgb)
|
| 24 |
-
|
| 25 |
keypoints = {}
|
| 26 |
|
| 27 |
if result.pose_landmarks:
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
# Extract
|
| 31 |
-
|
| 32 |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
|
| 33 |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
|
| 34 |
-
'left_hip': mp_pose_landmark.LEFT_HIP
|
|
|
|
| 35 |
}
|
| 36 |
|
| 37 |
-
for name,
|
| 38 |
-
lm = result.pose_landmarks.landmark[
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
cv2.circle(
|
| 44 |
-
cv2.putText(
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
], dtype=np.float32)
|
| 59 |
-
|
| 60 |
-
# Compute warp matrix and apply it
|
| 61 |
-
warp_mat = cv2.getAffineTransform(src_tri, dst_tri)
|
| 62 |
-
warped_clothing = cv2.warpAffine(clothing_img, warp_mat, (width, height), flags=cv2.INTER_LINEAR,
|
| 63 |
-
borderMode=cv2.BORDER_TRANSPARENT)
|
| 64 |
-
|
| 65 |
-
# Blend clothing over body
|
| 66 |
-
if clothing_img.shape[2] == 4: # has alpha
|
| 67 |
-
alpha = warped_clothing[:, :, 3] / 255.0
|
| 68 |
-
for c in range(3):
|
| 69 |
-
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c]
|
| 70 |
-
else:
|
| 71 |
-
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0)
|
| 72 |
-
|
| 73 |
-
return output
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
image_blocks = gr.Blocks(theme="Nymbo/Alyx_Theme").queue()
|
| 77 |
with image_blocks as demo:
|
| 78 |
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
|
| 79 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
| 80 |
with gr.Row():
|
| 81 |
with gr.Column():
|
| 82 |
-
|
| 83 |
example = gr.Examples(
|
| 84 |
-
inputs=
|
| 85 |
examples_per_page=10,
|
| 86 |
examples=human_list_path
|
| 87 |
)
|
| 88 |
|
| 89 |
with gr.Column():
|
| 90 |
-
garm_img = gr.Image(label="Garment", type="pil",interactive=True)
|
| 91 |
example = gr.Examples(
|
| 92 |
inputs=garm_img,
|
| 93 |
examples_per_page=8,
|
|
@@ -96,5 +86,9 @@ with image_blocks as demo:
|
|
| 96 |
image_out = gr.Image(label="Processed image", type="pil")
|
| 97 |
|
| 98 |
with gr.Row():
|
| 99 |
-
try_button = gr.Button(value="Try-on")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
image_blocks.launch()
|
|
|
|
| 5 |
import os
|
| 6 |
|
| 7 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
| 8 |
+
|
| 9 |
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
| 10 |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
| 11 |
|
| 12 |
+
human_list = os.listdir(os.path.join(example_path, "human"))
|
| 13 |
+
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
|
| 14 |
|
| 15 |
# Initialize MediaPipe Pose
|
| 16 |
mp_pose = mp.solutions.pose
|
|
|
|
| 19 |
mp_pose_landmark = mp_pose.PoseLandmark
|
| 20 |
|
| 21 |
|
| 22 |
+
def detect_pose(image):
|
| 23 |
+
# Convert to RGB
|
| 24 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 25 |
+
|
| 26 |
+
# Run pose detection
|
| 27 |
result = pose.process(image_rgb)
|
| 28 |
+
|
| 29 |
keypoints = {}
|
| 30 |
|
| 31 |
if result.pose_landmarks:
|
| 32 |
+
# Draw landmarks on image
|
| 33 |
+
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)
|
| 34 |
+
|
| 35 |
+
# Get image dimensions
|
| 36 |
+
height, width, _ = image.shape
|
| 37 |
|
| 38 |
+
# Extract specific landmarks
|
| 39 |
+
landmark_indices = {
|
| 40 |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
|
| 41 |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
|
| 42 |
+
'left_hip': mp_pose_landmark.LEFT_HIP,
|
| 43 |
+
'right_hip': mp_pose_landmark.RIGHT_HIP
|
| 44 |
}
|
| 45 |
|
| 46 |
+
for name, index in landmark_indices.items():
|
| 47 |
+
lm = result.pose_landmarks.landmark[index]
|
| 48 |
+
x, y = int(lm.x * width), int(lm.y * height)
|
| 49 |
+
keypoints[name] = (x, y)
|
| 50 |
+
|
| 51 |
+
# Draw a circle + label for debug
|
| 52 |
+
cv2.circle(image, (x, y), 5, (0, 255, 0), -1)
|
| 53 |
+
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 54 |
+
|
| 55 |
+
return image
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def process_image(human_img):
|
| 59 |
+
# Convert PIL image to NumPy array
|
| 60 |
+
human_img = np.array(human_img)
|
| 61 |
+
|
| 62 |
+
processed_image = detect_pose(human_img)
|
| 63 |
+
return processed_image
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
image_blocks = gr.Blocks().queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
with image_blocks as demo:
|
| 68 |
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
|
| 69 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
+
human_img = gr.Image(type="pil", label='Human', interactive=True)
|
| 73 |
example = gr.Examples(
|
| 74 |
+
inputs=human_img,
|
| 75 |
examples_per_page=10,
|
| 76 |
examples=human_list_path
|
| 77 |
)
|
| 78 |
|
| 79 |
with gr.Column():
|
| 80 |
+
garm_img = gr.Image(label="Garment", type="pil", interactive=True)
|
| 81 |
example = gr.Examples(
|
| 82 |
inputs=garm_img,
|
| 83 |
examples_per_page=8,
|
|
|
|
| 86 |
image_out = gr.Image(label="Processed image", type="pil")
|
| 87 |
|
| 88 |
with gr.Row():
|
| 89 |
+
try_button = gr.Button(value="Try-on", variant='primary')
|
| 90 |
+
|
| 91 |
+
# Linking the button to the processing function
|
| 92 |
+
try_button.click(fn=process_image, inputs=human_img, outputs=image_out)
|
| 93 |
+
|
| 94 |
image_blocks.launch()
|