Priyanka6's picture
Update space
ec6e229
raw
history blame
8.31 kB
# # import gradio as gr
# # from huggingface_hub import InferenceClient
# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # ):
# # messages = [{"role": "system", "content": system_message}]
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # messages.append({"role": "user", "content": message})
# # response = ""
# # for message in client.chat_completion(
# # messages,
# # max_tokens=max_tokens,
# # stream=True,
# # temperature=temperature,
# # top_p=top_p,
# # ):
# # token = message.choices[0].delta.content
# # response += token
# # yield response
# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# # respond,
# # additional_inputs=[
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# # gr.Slider(
# # minimum=0.1,
# # maximum=1.0,
# # value=0.95,
# # step=0.05,
# # label="Top-p (nucleus sampling)",
# # ),
# # ],
# # )
# # if __name__ == "__main__":
# # demo.launch()
# import torch
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import os
# # Define model names
# MODEL_1_PATH = "./adapter_model.safetensors" # Local path inside Space
# MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
# # Load the tokenizer (same for both models)
# TOKENIZER_NAME = "sarvamai/sarvam-1"
# tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
# def fix_checkpoint(model_path):
# """Fixes the model checkpoint by adjusting mismatched weight dimensions."""
# checkpoint_file = os.path.join(model_path, "pytorch_model.bin")
# fixed_checkpoint_file = os.path.join(model_path, "pytorch_model_fixed.bin")
# if not os.path.exists(checkpoint_file):
# raise FileNotFoundError(f"Checkpoint file not found at: {checkpoint_file}")
# print("Loading checkpoint for fixing...")
# checkpoint = torch.load(checkpoint_file, map_location="cpu")
# # Adjust weights (truncate the last token if mismatch)
# if "base_model.model.lm_head.base_layer.weight" in checkpoint:
# checkpoint["base_model.model.lm_head.base_layer.weight"] = checkpoint["base_model.model.lm_head.base_layer.weight"][:-1]
# if "base_model.model.lm_head.lora_B.default.weight" in checkpoint:
# checkpoint["base_model.model.lm_head.lora_B.default.weight"] = checkpoint["base_model.model.lm_head.lora_B.default.weight"][:-1]
# # Save the fixed checkpoint
# print("Saving fixed checkpoint...")
# torch.save(checkpoint, fixed_checkpoint_file)
# return fixed_checkpoint_file # Return the new file path
# # Function to load a model
# def load_model(model_choice):
# if model_choice == "Hugging face dataset":
# model = AutoModelForCausalLM.from_pretrained("./", torch_dtype=torch.float16, device_map="auto")
# model.load_adapter(MODEL_1_PATH, "safe_tensors") # Load safetensors adapter
# else:
# model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
# model.eval()
# return model
# # Load default model on startup
# current_model = load_model("Hugging face dataset")
# # Chatbot response function
# def respond(message, history, model_choice, max_tokens, temperature, top_p):
# global current_model
# # Switch model if user selects a different one
# if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
# (model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
# current_model = load_model(model_choice)
# # Convert chat history to format
# messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# # Tokenize and generate response
# inputs = tokenizer.apply_chat_template(messages, tokenize=False)
# input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
# output_tokens = current_model.generate(
# **input_tokens,
# max_new_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# pad_token_id=tokenizer.pad_token_id,
# eos_token_id=tokenizer.eos_token_id,
# )
# response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
# return response
# # Define Gradio Chat Interface
# demo = gr.ChatInterface(
# fn=respond,
# additional_inputs=[
# gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
# gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
import torch
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
# Define model and tokenizer paths
MODEL_1_PATH = "Priyanka6/fine-tuning-inference"
TOKENIZER_NAME = "sarvam/sarvam-1" # Keep this unchanged if tokenizer hasn't changed
def trim_adapter_weights(model_path):
"""
Trims the last token from the adapter's lm_head.lora_B.default.weight
if there is a mismatch with the base model.
"""
adapter_file = os.path.join(model_path, "adapter_model.safetensors")
if not os.path.exists(adapter_file):
raise FileNotFoundError(f"Adapter file not found: {adapter_file}")
checkpoint = torch.load(adapter_file, map_location="cpu")
key_to_trim = "lm_head.lora_B.default.weight"
if key_to_trim in checkpoint:
original_size = checkpoint[key_to_trim].shape[0]
expected_size = original_size - 1 # Removing last token
print(f"Trimming {key_to_trim}: {original_size} -> {expected_size}")
checkpoint[key_to_trim] = checkpoint[key_to_trim][:-1] # Trim the last row
# Save the modified adapter
trimmed_adapter_path = os.path.join(model_path, "adapter_model_trimmed.safetensors")
torch.save(checkpoint, trimmed_adapter_path)
return trimmed_adapter_path
return adapter_file
# Before loading the adapter, trim it if necessary
trimmed_adapter_path = trim_adapter_weights(MODEL_1_PATH)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
MODEL_1_PATH, torch_dtype=torch.float16, device_map="auto"
)
# Load the trimmed adapter
model.load_adapter(trimmed_adapter_path, "safe_tensors")
# Chat function
def chat(query):
inputs = tokenizer(query, return_tensors="pt").to("cuda")
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=100)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Test the chatbot
if __name__ == "__main__":
while True:
query = input("User: ")
if query.lower() in ["exit", "quit"]:
break
response = chat(query)
print(f"Bot: {response}")