Spaces:
Sleeping
Sleeping
File size: 9,105 Bytes
13e2a13 555eda9 13e2a13 649b115 13e2a13 555eda9 13e2a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import streamlit as st
import boto3
import json
from qdrant_client import QdrantClient
from qdrant_client.http import models
import PyPDF2
import io
import uuid
# Simple function to connect to AWS Bedrock
def connect_to_bedrock():
client = boto3.client('bedrock-runtime', region_name='us-east-1')
return client
# Simple function to connect to QDrant Cloud
def connect_to_qdrant(api_key, url):
client = QdrantClient(url=url, api_key=api_key)
return client
# Extract text from PDF file
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
# Split text into smaller chunks (simple way)
def split_text_into_chunks(text, chunk_size=1000):
words = text.split()
chunks = []
current_chunk = []
current_size = 0
for word in words:
current_chunk.append(word)
current_size += len(word) + 1 # +1 for space
if current_size >= chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = []
current_size = 0
if current_chunk: # Add last chunk if not empty
chunks.append(" ".join(current_chunk))
return chunks
# Get embeddings (vector numbers) from AI
def get_embeddings(bedrock_client, text):
body = json.dumps({
"inputText": text
})
response = bedrock_client.invoke_model(
modelId="amazon.titan-embed-text-v1",
body=body
)
result = json.loads(response['body'].read())
return result['embedding']
# Store PDF chunks in QDrant vector database
def store_pdf_in_qdrant(qdrant_client, bedrock_client, pdf_chunks, collection_name):
# Create collection if it doesn't exist
try:
qdrant_client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE)
)
except:
pass # Collection might already exist
# Store each chunk
points = []
for i, chunk in enumerate(pdf_chunks):
# Get vector representation of text
embedding = get_embeddings(bedrock_client, chunk)
# Create a point for QDrant
point = models.PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={"text": chunk, "chunk_id": i}
)
points.append(point)
# Upload to QDrant
qdrant_client.upsert(
collection_name=collection_name,
points=points
)
return len(points)
# Search for relevant text in QDrant
def search_in_qdrant(qdrant_client, bedrock_client, question, collection_name, top_k=3):
# Get vector for question
question_embedding = get_embeddings(bedrock_client, question)
# Search in QDrant
results = qdrant_client.search(
collection_name=collection_name,
query_vector=question_embedding,
limit=top_k
)
# Extract relevant text
relevant_texts = []
for result in results:
relevant_texts.append(result.payload["text"])
return relevant_texts
# Ask AI to answer question based on PDF content
def ask_ai_with_context(bedrock_client, question, relevant_texts):
context = "\n\n".join(relevant_texts)
prompt = f"""
Based on the following information from a PDF document, please answer the question.
PDF Content:
{context}
Question: {question}
Please provide a clear and helpful answer based only on the information provided above.
If the answer is not in the provided content, please say so.
"""
body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 500,
"messages": [{"role": "user", "content": prompt}]
})
response = bedrock_client.invoke_model(
modelId="anthropic.claude-3-haiku-20240307-v1:0",
body=body
)
result = json.loads(response['body'].read())
return result['content'][0]['text']
# Main app
def main():
st.title("π RAG_2 PDF Chatbot")
st.write("Upload a PDF and ask questions about it!")
# Sidebar for settings
with st.sidebar:
st.subheader("π§ Setup")
st.write("You need these to use the app:")
# QDrant settings
st.write("**QDrant Cloud Settings:**")
qdrant_url = st.text_input("QDrant URL", placeholder="https://your-cluster.qdrant.io")
qdrant_api_key = st.text_input("QDrant API Key", type="password")
st.write("**Collection Name:**")
collection_name = st.text_input("Collection Name", value="pdf_documents")
st.markdown("---")
st.markdown("""
**How to get QDrant settings:**
1. Go to qdrant.io
2. Create free account
3. Create a cluster
4. Copy URL and API key
""")
# Main content
tab1, tab2 = st.tabs(["π€ Upload PDF", "π¬ Chat with PDF"])
with tab1:
st.subheader("Upload Your PDF")
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
if uploaded_file and qdrant_url and qdrant_api_key:
if st.button("π Process PDF"):
try:
with st.spinner("Processing your PDF..."):
# Connect to services
bedrock_client = connect_to_bedrock()
qdrant_client = connect_to_qdrant(qdrant_api_key, qdrant_url)
# Extract text from PDF
st.write("π Extracting text from PDF...")
pdf_text = extract_text_from_pdf(uploaded_file)
# Split into chunks
st.write("βοΈ Breaking text into smaller pieces...")
chunks = split_text_into_chunks(pdf_text)
# Store in QDrant
st.write("πΎ Storing in vector database...")
num_chunks = store_pdf_in_qdrant(qdrant_client, bedrock_client, chunks, collection_name)
st.success(f"β
PDF processed successfully! Stored {num_chunks} text chunks.")
st.balloons()
except Exception as e:
st.error(f"β Error processing PDF: {str(e)}")
elif uploaded_file:
st.warning("β οΈ Please enter QDrant settings in the sidebar first!")
with tab2:
st.subheader("Ask Questions About Your PDF")
if qdrant_url and qdrant_api_key:
question = st.text_input("π What would you like to know about your PDF?")
if question:
if st.button("π Get Answer"):
try:
with st.spinner("Searching for answer..."):
# Connect to services
bedrock_client = connect_to_bedrock()
qdrant_client = connect_to_qdrant(qdrant_api_key, qdrant_url)
# Search for relevant content
st.write("π Searching relevant content...")
relevant_texts = search_in_qdrant(qdrant_client, bedrock_client, question, collection_name)
# Get AI answer
st.write("π€ Generating answer...")
answer = ask_ai_with_context(bedrock_client, question, relevant_texts)
# Show answer
st.subheader("π Answer:")
st.write(answer)
# Show sources (optional)
with st.expander("π Source content used"):
for i, text in enumerate(relevant_texts, 1):
st.write(f"**Source {i}:**")
st.write(text[:200] + "..." if len(text) > 200 else text)
st.write("---")
except Exception as e:
st.error(f"β Error: {str(e)}")
else:
st.warning("β οΈ Please enter QDrant settings in the sidebar first!")
# Quick setup guide
def show_setup_guide():
with st.expander("π Quick Setup Guide"):
st.markdown("""
**Step 1: Install Required Libraries**
```bash
pip install streamlit boto3 qdrant-client PyPDF2
```
**Step 2: Set up AWS**
- Create AWS account
- Run `aws configure` and enter your keys
**Step 3: Set up QDrant Cloud**
- Go to qdrant.io
- Create free account
- Create a cluster
- Copy URL and API key to sidebar
**Step 4: Run the App**
```bash
streamlit run pdf_chatbot.py
```
""")
# Run the app
if __name__ == "__main__":
show_setup_guide()
main()
|