File size: 9,105 Bytes
13e2a13
555eda9
13e2a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649b115
13e2a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555eda9
 
13e2a13
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import streamlit as st

import boto3

import json

from qdrant_client import QdrantClient

from qdrant_client.http import models

import PyPDF2

import io

import uuid

# Simple function to connect to AWS Bedrock

def connect_to_bedrock():

    client = boto3.client('bedrock-runtime', region_name='us-east-1')

    return client

# Simple function to connect to QDrant Cloud

def connect_to_qdrant(api_key, url):

    client = QdrantClient(url=url, api_key=api_key)

    return client

# Extract text from PDF file

def extract_text_from_pdf(pdf_file):

    pdf_reader = PyPDF2.PdfReader(pdf_file)

    text = ""

    for page in pdf_reader.pages:

        text += page.extract_text() + "\n"

    return text

# Split text into smaller chunks (simple way)

def split_text_into_chunks(text, chunk_size=1000):

    words = text.split()

    chunks = []

    current_chunk = []

    current_size = 0

    for word in words:

        current_chunk.append(word)

        current_size += len(word) + 1  # +1 for space

        if current_size >= chunk_size:

            chunks.append(" ".join(current_chunk))

            current_chunk = []

            current_size = 0

    if current_chunk:  # Add last chunk if not empty

        chunks.append(" ".join(current_chunk))

    return chunks

# Get embeddings (vector numbers) from AI

def get_embeddings(bedrock_client, text):

    body = json.dumps({

        "inputText": text

    })

    response = bedrock_client.invoke_model(

        modelId="amazon.titan-embed-text-v1",

        body=body

    )

    result = json.loads(response['body'].read())

    return result['embedding']

# Store PDF chunks in QDrant vector database

def store_pdf_in_qdrant(qdrant_client, bedrock_client, pdf_chunks, collection_name):

    # Create collection if it doesn't exist

    try:

        qdrant_client.create_collection(

            collection_name=collection_name,

            vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE)

        )

    except:

        pass  # Collection might already exist

    # Store each chunk

    points = []

    for i, chunk in enumerate(pdf_chunks):

        # Get vector representation of text

        embedding = get_embeddings(bedrock_client, chunk)

        # Create a point for QDrant

        point = models.PointStruct(

            id=str(uuid.uuid4()),

            vector=embedding,

            payload={"text": chunk, "chunk_id": i}

        )

        points.append(point)

    # Upload to QDrant

    qdrant_client.upsert(

        collection_name=collection_name,

        points=points

    )

    return len(points)

# Search for relevant text in QDrant

def search_in_qdrant(qdrant_client, bedrock_client, question, collection_name, top_k=3):

    # Get vector for question

    question_embedding = get_embeddings(bedrock_client, question)

    # Search in QDrant

    results = qdrant_client.search(

        collection_name=collection_name,

        query_vector=question_embedding,

        limit=top_k

    )

    # Extract relevant text

    relevant_texts = []

    for result in results:

        relevant_texts.append(result.payload["text"])

    return relevant_texts

# Ask AI to answer question based on PDF content

def ask_ai_with_context(bedrock_client, question, relevant_texts):

    context = "\n\n".join(relevant_texts)

    prompt = f"""

    Based on the following information from a PDF document, please answer the question.

    PDF Content:

    {context}

    Question: {question}

    Please provide a clear and helpful answer based only on the information provided above.

    If the answer is not in the provided content, please say so.

    """

    body = json.dumps({

        "anthropic_version": "bedrock-2023-05-31",

        "max_tokens": 500,

        "messages": [{"role": "user", "content": prompt}]

    })

    response = bedrock_client.invoke_model(

        modelId="anthropic.claude-3-haiku-20240307-v1:0",

        body=body

    )

    result = json.loads(response['body'].read())

    return result['content'][0]['text']

# Main app

def main():

    st.title("πŸ“„ RAG_2 PDF Chatbot")

    st.write("Upload a PDF and ask questions about it!")

    # Sidebar for settings

    with st.sidebar:

        st.subheader("πŸ”§ Setup")

        st.write("You need these to use the app:")

        # QDrant settings

        st.write("**QDrant Cloud Settings:**")

        qdrant_url = st.text_input("QDrant URL", placeholder="https://your-cluster.qdrant.io")

        qdrant_api_key = st.text_input("QDrant API Key", type="password")

        st.write("**Collection Name:**")

        collection_name = st.text_input("Collection Name", value="pdf_documents")

        st.markdown("---")

        st.markdown("""

        **How to get QDrant settings:**

        1. Go to qdrant.io

        2. Create free account

        3. Create a cluster

        4. Copy URL and API key

        """)

    # Main content

    tab1, tab2 = st.tabs(["πŸ“€ Upload PDF", "πŸ’¬ Chat with PDF"])

    with tab1:

        st.subheader("Upload Your PDF")

        uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")

        if uploaded_file and qdrant_url and qdrant_api_key:

            if st.button("πŸš€ Process PDF"):

                try:

                    with st.spinner("Processing your PDF..."):

                        # Connect to services

                        bedrock_client = connect_to_bedrock()

                        qdrant_client = connect_to_qdrant(qdrant_api_key, qdrant_url)

                        # Extract text from PDF

                        st.write("πŸ“– Extracting text from PDF...")

                        pdf_text = extract_text_from_pdf(uploaded_file)

                        # Split into chunks

                        st.write("βœ‚οΈ Breaking text into smaller pieces...")

                        chunks = split_text_into_chunks(pdf_text)

                        # Store in QDrant

                        st.write("πŸ’Ύ Storing in vector database...")

                        num_chunks = store_pdf_in_qdrant(qdrant_client, bedrock_client, chunks, collection_name)

                        st.success(f"βœ… PDF processed successfully! Stored {num_chunks} text chunks.")

                        st.balloons()

                except Exception as e:

                    st.error(f"❌ Error processing PDF: {str(e)}")

        elif uploaded_file:

            st.warning("⚠️ Please enter QDrant settings in the sidebar first!")

    with tab2:

        st.subheader("Ask Questions About Your PDF")

        if qdrant_url and qdrant_api_key:

            question = st.text_input("πŸ’­ What would you like to know about your PDF?")

            if question:

                if st.button("πŸ” Get Answer"):

                    try:

                        with st.spinner("Searching for answer..."):

                            # Connect to services

                            bedrock_client = connect_to_bedrock()

                            qdrant_client = connect_to_qdrant(qdrant_api_key, qdrant_url)

                            # Search for relevant content

                            st.write("πŸ” Searching relevant content...")

                            relevant_texts = search_in_qdrant(qdrant_client, bedrock_client, question, collection_name)

                            # Get AI answer

                            st.write("πŸ€– Generating answer...")

                            answer = ask_ai_with_context(bedrock_client, question, relevant_texts)

                            # Show answer

                            st.subheader("πŸ“ Answer:")

                            st.write(answer)

                            # Show sources (optional)

                            with st.expander("πŸ“š Source content used"):

                                for i, text in enumerate(relevant_texts, 1):

                                    st.write(f"**Source {i}:**")

                                    st.write(text[:200] + "..." if len(text) > 200 else text)

                                    st.write("---")

                    except Exception as e:

                        st.error(f"❌ Error: {str(e)}")

        else:

            st.warning("⚠️ Please enter QDrant settings in the sidebar first!")

# Quick setup guide

def show_setup_guide():

    with st.expander("πŸ“– Quick Setup Guide"):

        st.markdown("""

        **Step 1: Install Required Libraries**

        ```bash

        pip install streamlit boto3 qdrant-client PyPDF2

        ```

        **Step 2: Set up AWS**

        - Create AWS account

        - Run `aws configure` and enter your keys

        **Step 3: Set up QDrant Cloud**

        - Go to qdrant.io

        - Create free account

        - Create a cluster

        - Copy URL and API key to sidebar

        **Step 4: Run the App**

        ```bash

        streamlit run pdf_chatbot.py

        ```

        """)

# Run the app

if __name__ == "__main__":

    show_setup_guide()

    main()