PrajwalW commited on
Commit
68708fb
·
verified ·
1 Parent(s): 76f07ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -53
app.py CHANGED
@@ -1,64 +1,93 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
41
 
 
 
42
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import os
4
+ import json
5
+ import boto3
6
+ from dotenv import load_dotenv
7
 
8
+ # API Key (Ensure security; do not share publicly)
9
+ # API_KEY = "67bd857847938bebf6b0ff82a26ba45f251986f3"
 
 
10
 
11
+ # Define the API endpoint
12
+ # API_URL = "https://google.serper.dev/search"
13
 
14
+ # Load API keys from .env file
15
+ load_dotenv()
16
+ NEWS_API_KEY = "3d542da6aaa94a79ad7d2b852e944dac"
17
+ SERPER_API_KEY = "67bd857847938bebf6b0ff82a26ba45f251986f3"
 
 
 
 
 
18
 
19
+ # Claude 3 via AWS Bedrock
20
+ bedrock = boto3.client("bedrock-runtime", region_name=os.getenv("AWS_REGION"))
 
 
 
21
 
22
+ # Streamlit app UI
23
+ st.title("📰 News Summarizer Agent")
24
+ topic = st.text_input("Enter a topic, company name, or keyword:")
25
 
26
+ # Fetch news from NewsAPI
27
+ def fetch_newsapi_news(topic):
28
+ url = f"https://newsapi.org/v2/everything?q={topic}&pageSize=5&sortBy=publishedAt&apiKey={NEWS_API_KEY}"
29
+ response = requests.get(url)
30
+ articles = response.json().get("articles", [])
31
+ return [{"title": a["title"], "description": a["description"], "url": a["url"]} for a in articles]
32
 
33
+ # Fetch news from Serper.dev
34
+ def fetch_serper_news(topic):
35
+ url = "https://google.serper.dev/news"
36
+ headers = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
37
+ data = {"q": topic}
38
+ response = requests.post(url, headers=headers, data=json.dumps(data))
39
+ results = response.json().get("news", [])[:5]
40
+ return [{"title": r["title"], "description": r.get("snippet", ""), "url": r["link"]} for r in results]
41
 
42
+ # Summarize with Claude 3
43
+ def summarize_with_claude(article):
44
+ messages = [
45
+ {
46
+ "role": "user",
47
+ "content": f"""You are a helpful news summarizer agent.
48
+ Given the article title and description, generate:
49
+ 1. A more relevant headline based on the topic
50
+ 2. A 3-5 line clear and concise summary.
51
 
52
+ Title: {article['title']}
53
+ Description: {article['description']}
54
 
55
+ Respond as:
56
+ Headline: ...
57
+ Summary: ...
58
  """
59
+ }
60
+ ]
61
+
62
+ body = {
63
+ "messages": messages,
64
+ "max_tokens": 300,
65
+ "temperature": 0.7,
66
+ "anthropic_version": "bedrock-2023-05-31" # REQUIRED
67
+ }
68
+
69
+ response = bedrock.invoke_model(
70
+ modelId="anthropic.claude-3-sonnet-20240229-v1:0",
71
+ body=json.dumps(body),
72
+ contentType="application/json",
73
+ accept="application/json"
74
+ )
75
+
76
+ result = json.loads(response["body"].read())
77
+ return result["content"][0]["text"].strip()
78
+
79
+ # Button and main logic
80
+ if st.button("Get News"):
81
+ if not topic:
82
+ st.warning("Please enter a topic.")
83
+ else:
84
+ st.subheader("Fetching top news...")
85
+ news_items = fetch_newsapi_news(topic) + fetch_serper_news(topic)
86
+
87
+ for idx, article in enumerate(news_items[:5]):
88
+ st.markdown(f"### 🗞️ News #{idx+1}")
89
+ st.markdown(f"[Original Article]({article['url']})")
90
+
91
+ with st.spinner("Generating summary..."):
92
+ summary = summarize_with_claude(article)
93
+ st.markdown(summary)