File size: 15,129 Bytes
1809285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import logging
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.distributed as dist
from torch import nn, Tensor
from transformers import AutoModel, AutoTokenizer, AutoConfig
from transformers.file_utils import ModelOutput


from visual_bge.eva_clip import create_eva_vision_and_transforms
from PIL import Image

logger = logging.getLogger(__name__)


@dataclass
class EncoderOutput(ModelOutput):
    q_reps: Optional[Tensor] = None
    c_reps: Optional[Tensor] = None
    loss: Optional[Tensor] = None
    scores: Optional[Tensor] = None


class Visualized_BGE(nn.Module):
    def __init__(self,
                 model_name_bge: str = None,
                 model_weight = None, # "/path/to/your/weight/file/"
                 normlized: bool = True,
                 sentence_pooling_method: str = 'cls',
                 negatives_cross_device: bool = False,
                 temperature: float = 0.02, # 1.0
                 from_pretrained=None, # local config file and model 
                 ):
        super().__init__()

        assert 'bge' in model_name_bge
        assert model_weight is not None
        
        self.model_name_bge = model_name_bge
        
        if 'bge-base-en-v1.5' in model_name_bge:
            model_name_eva = "EVA02-CLIP-B-16"
            self.hidden_dim = 768
            self.depth = 12
        elif 'bge-m3' in model_name_bge:
            model_name_eva = "EVA02-CLIP-L-14"
            self.hidden_dim = 1024
            self.depth = 24
        else:
            raise Exception(f'Unavailable model_name {model_name_bge}')
        
        if not from_pretrained:
            bge_config = AutoConfig.from_pretrained(model_name_bge)
            bge = AutoModel.from_config(bge_config)
        else:
            print("Loading from local path.")
            bge_config = AutoConfig.from_pretrained(from_pretrained, local_files_only=True)
            bge = AutoModel.from_config(bge_config)
        
        self.bge_encoder = bge.encoder
        self.bge_embeddings = bge.embeddings
        self.bge_pooler = bge.pooler

        self.model_visual, self.preprocess_train, self.preprocess_val= create_eva_vision_and_transforms(
            model_name_eva, 
            force_custom_clip=True)

        
        self.visual_proj = nn.Linear(self.hidden_dim, self.hidden_dim)

        
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')

        self.normlized = normlized
        self.sentence_pooling_method = sentence_pooling_method
        self.temperature = temperature
        if not normlized:
            self.temperature = 1.0
            logger.info("reset temperature = 1.0 due to using inner product to compute similarity")

        self.negatives_cross_device = negatives_cross_device
        if self.negatives_cross_device:
            if not dist.is_initialized():
                raise ValueError('Distributed training has not been initialized for representation all gather.')

            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        
        self.load_model(model_weight)
        
        if not from_pretrained:
            self.tokenizer = AutoTokenizer.from_pretrained(model_name_bge, use_fast=False)
        else:
            self.tokenizer = AutoTokenizer.from_pretrained(from_pretrained, use_fast=False)

        if torch.cuda.is_available():
            self.device = torch.device('cuda')
            self.to(self.device)
        else:
            self.device = torch.device('cpu')
        self.dtype = next(bge.parameters()).dtype
    
    def load_model(self, model_weight):
        self.load_state_dict(torch.load(model_weight, map_location='cpu'))
    
    def gradient_checkpointing_enable(self, **kwargs):
        # self.bge_encoder.gradient_checkpointing_enable()
        self.model_visual.set_grad_checkpointing(True)
    
    
    
    def encode(self, image=None, text=None):
        # used for simple inference
        if image is not None:
            image = self.preprocess_val(image).unsqueeze(0)

            if text is not None:
                text = self.tokenizer(text, return_tensors="pt", padding=True)
                return self.encode_mm(image.to(self.device), text.to(self.device))
            else:
                return self.encode_image(image.to(self.device))
        else:
            if text is not None:
                text = self.tokenizer(text, return_tensors="pt", padding=True)
                return self.encode_text(text.to(self.device))
            else:
                return None
        
    
    def get_extended_attention_mask(
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = torch.float16
    ) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (`Tuple[int]`):
                The shape of the input to the model.

        Returns:
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
        """
        
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            
            extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and the dtype's smallest value for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
        
        return extended_attention_mask

    def sentence_embedding(self, hidden_state, mask):
        if self.sentence_pooling_method == 'mean':
            s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
            d = mask.sum(axis=1, keepdim=True).float()
            return s / d
        elif self.sentence_pooling_method == 'cls':
            return hidden_state[:, 0]

    
    def encode_text(self, texts):
        '''
        encode text only
        '''
        input_ids = texts['input_ids']
        attention_mask = texts['attention_mask']

        input_shape = input_ids.size()
        device = input_ids.device

        token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        head_mask = [None] * self.depth
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape).to(self.dtype)
        
        embedding_output = self.bge_embeddings(
            input_ids=input_ids,
            position_ids=None,
            token_type_ids=token_type_ids,
            inputs_embeds=None,
            past_key_values_length=0,
        )
        encoder_outputs = self.bge_encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            past_key_values=None,
            use_cache=False,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        sequence_output = encoder_outputs[0]
        # pooled_output = self.bge_pooler(sequence_output) if self.bge_pooler is not None else None

        t_reps = self.sentence_embedding(sequence_output, texts['attention_mask']) # tensor: reps with pooling
        if self.normlized:
            t_reps = torch.nn.functional.normalize(t_reps, dim=-1)
        return t_reps.contiguous()

    def encode_mm(self, images:torch.Tensor, texts):
        img_token_emb = self.img_token_embedding(images) #[B, Patch_num, C]
        img_token_emb = img_token_emb[:,1:]              # img_cls is not used here
        img_token_emb = self.visual_proj(img_token_emb)
        device = img_token_emb.device
        
        img_token_len = img_token_emb.size()[1]

        # image position embedding, default position: bge_cls + img tokens + texts
        img_token_position_ids = torch.arange(1, 1 + img_token_len).to(device=device)
        img_position_embeddings = self.bge_embeddings.position_embeddings(img_token_position_ids)
        img_token_emb = img_token_emb + img_position_embeddings

        img_token_emb = self.bge_embeddings.LayerNorm(img_token_emb)

        ### deal with prompt/text
        prompt_input_ids = texts['input_ids']
        prompt_attention_mask = texts['attention_mask']
        prom_input_shape = prompt_input_ids.size()
        
        # bert
        batch_size = prom_input_shape[0]
        prompt_len = prom_input_shape[1]
        prompt_start = 1 + img_token_len

        
        cls_id = torch.tensor([0]).to(device=device)
        prompt_position_ids = torch.arange(prompt_start, prompt_start + prompt_len - 1).to(device=device)
        prompt_position_ids = torch.cat([cls_id, prompt_position_ids]).to(device=device)

        prompt_token_type_ids = torch.zeros(prom_input_shape, dtype=torch.long, device=device)
        prompt_embedding_output = self.bge_embeddings(
            input_ids=prompt_input_ids,
            position_ids=prompt_position_ids,
            token_type_ids=prompt_token_type_ids,
            inputs_embeds=None,
            past_key_values_length=0,
        )  # [B, T, C]
        
        
        cls_token = prompt_embedding_output[:, 0:1, :] # bge_cls token
        prompt_embedding_output = prompt_embedding_output[:, 1:]

        prompt_img_embedding = torch.cat([cls_token, img_token_emb, prompt_embedding_output], dim=1)
        
        img_attention_mask = torch.ones(batch_size, img_token_len, device=device)  
        prom_img_attention_mask = torch.cat([img_attention_mask, prompt_attention_mask], dim=1)
        prom_img_input_shape = prompt_img_embedding.size()

        head_mask = [None] * self.depth
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(prom_img_attention_mask, prom_img_input_shape).to(self.dtype)
        
        
        encoder_outputs = self.bge_encoder(
            prompt_img_embedding,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            past_key_values=None,
            use_cache=False,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        sequence_output = encoder_outputs[0]
        
        prompt_img_reps = self.sentence_embedding(sequence_output, prom_img_attention_mask) # tensor: reps with pooling
        if self.normlized:
            prompt_img_reps = torch.nn.functional.normalize(prompt_img_reps, dim=-1)
        return prompt_img_reps

    def compute_similarity(self, q_reps, p_reps):
        if len(p_reps.size()) == 2:
            return torch.matmul(q_reps, p_reps.transpose(0, 1))
        return torch.matmul(q_reps, p_reps.transpose(-2, -1))

    def img_token_embedding(self, images):
        if images is None:
            return None
        img_token_emb = self.model_visual.encode_image(images, normalize=False) # return_all_features=True, [B, Patch_num, C] 
        
        return img_token_emb.contiguous()
    
    def encode_image(self, images):
        if images is None:
            return None
        
        batch_size = images.shape[0]
        prompts = [""] * batch_size
        
        prompts = self.tokenizer(prompts, return_tensors="pt", padding=True)        
        prompts = prompts.to(images.device)
        img_reps = self.encode_mm(images, prompts)
        return img_reps
    
    def forward(self, mm_it_query=None, image_candidate=None, text_candidate=None, text_query=None, mm_it_candidate=None, task_type=None):
        ### for stage-2 training
        if task_type == "edit_image":
            mm_query_reps = self.encode_mm(mm_it_query[0], mm_it_query[1])
            image_candi_reps = self.encode_image(image_candidate)
            query_reps = mm_query_reps
            candi_reps = image_candi_reps
                
        elif task_type == "t2it":
            text_query_reps = self.encode_text(text_query)
            mmit_candi_reps = self.encode_mm(mm_it_candidate[0], mm_it_candidate[1])
            query_reps = text_query_reps
            candi_reps = mmit_candi_reps
            
        
        if self.training:
            if self.negatives_cross_device:
                query_reps = self._dist_gather_tensor(query_reps)
                candi_reps = self._dist_gather_tensor(candi_reps)

            scores = self.compute_similarity(query_reps, candi_reps)
            scores = scores / self.temperature
            scores = scores.view(query_reps.size(0), -1)
            
            target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
            target = target * (candi_reps.size(0) // query_reps.size(0))
            
            loss_edit = self.compute_loss(scores, target)
            loss = loss_edit
            
            logging.info("task types: %s; loss: %s" %(task_type, str(loss_edit)))
        else:
            scores = self.compute_similarity(query_reps, candi_reps)
            loss=None
        return EncoderOutput(
            loss=loss,
            scores=scores,
            q_reps=query_reps,
            c_reps=candi_reps,
        )

    def compute_loss(self, scores, target):
        return self.cross_entropy(scores, target)

    def _dist_gather_tensor(self, t: Optional[torch.Tensor]):
        if t is None:
            return None
        t = t.contiguous()

        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)

        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)

        return all_tensors

    def save(self, output_dir: str):
        torch.save(self.state_dict(), os.path.join(output_dir, 'Visualized_BGE.pth'))