File size: 8,323 Bytes
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed95e7f
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a83892
 
 
35b3f62
31a84a9
 
4a83892
 
 
35b3f62
 
 
4a83892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d21fef3
4a83892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
259448b
35b3f62
 
 
 
 
 
 
 
 
259448b
35b3f62
a32dd35
 
 
 
 
 
 
 
 
 
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd88909
35b3f62
4a21dec
 
 
 
 
35b3f62
4a21dec
35b3f62
 
 
 
 
4a21dec
35b3f62
 
 
 
4a83892
35b3f62
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import json
import datetime
import re
import pandas as pd
import os, argparse
import random
import csv
from openai import OpenAI
from huggingface_hub import hf_hub_download
import json
import os



def gpt_4o_useful(input):
    client=OpenAI(api_key=os.environ.get("OAI"))
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": input
                    }
                ]
            }
        ],
        response_format={"type": "text"},
        temperature=0.0000000001,
        max_tokens=4096,
        top_p=0,
        frequency_penalty=0,
        presence_penalty=0,
        logprobs=True
    )

    text = response.choices[0].message.content

    if response.choices[0].logprobs and response.choices[0].logprobs.content:
        first_token_logprob = response.choices[0].logprobs.content[0]
        token = first_token_logprob.token
        logprob = first_token_logprob.logprob
    else:
        token = None
        logprob = None

    return text, token, logprob



def get_ICL(data, top_k=None):

    ICL =""
    if top_k == None:
        data = data
    else:
        # print(data)
        data = data[:top_k]
    for line in data:
        # line = json.loads(line)
        pledge = line["pledge"]
        event = line["event_description"]
        time = line["event_date"]
        input=f"Pledge: {pledge}\nEvent Summary: {event} (Event Date: {time})\nIs this event summary useful to track the fulfilment of this pledge"
        input = input.strip()
        output = line["label"].strip()
        ICL = f"{ICL}Input: {input}\nOutput: {output}\n\n"
    return ICL

def load_json(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    return data


def gpt_eval(test_instance, train_data, instruction, suggestion_meta, ICL_id=None):

    if suggestion_meta:
        # print(ICL_id)
        
        train_data = [line for line in train_data if str(line.get("pledge_id")) == str(ICL_id)]

    else:
        random.seed(42)
        random.shuffle(train_data)

    ICL = get_ICL(train_data, top_k=50)
    # print(ICL)
    input = f"{instruction}\nBelow are examples:\n\n{ICL}Now, please assign a label for the below instance.\nInput: {test_instance}\nOutput:"

    try:
        text, tokens, logprobs = gpt_4o_useful(input)
    except Exception as e:
        print(e)
        tokens = None
        logprobs = None

    return tokens, logprobs

def extract_columns_to_dict(file_path, delimiter='\t'):

    data_dict = {}

    with open(file_path, mode='r', encoding='utf-8') as file:
        reader = csv.reader(file, delimiter=delimiter)
        for row in reader:
            if len(row) >= 4:  
                key = row[2]  
                value = row[3]  
                data_dict[key] = value 

    return data_dict


import datetime
import re

def parse_date(date_str):
    if not date_str:
        return None, date_str
    date_str = date_str.strip()

    # Case 1: YYYY-MM-DD
    try:
        return datetime.datetime.strptime(date_str, "%Y-%m-%d"), date_str
    except ValueError:
        pass

    # Case 2: Relative date
    match = re.search(r'(.*) \(relative to (\d{4}-\d{2}-\d{2})\)', date_str)
    if match:
        reference = datetime.datetime.strptime(match.group(2), "%Y-%m-%d")
        relative_term = match.group(1).strip().lower()
        if relative_term == "last month":
            target_date = reference - datetime.timedelta(days=30)
        elif relative_term == "yesterday":
            target_date = reference - datetime.timedelta(days=1)
        elif relative_term == "last week":
            target_date = reference - datetime.timedelta(days=7)
        elif relative_term == "this week":
            target_date = reference
        else:
            return None, date_str
        return target_date, date_str  

    # Case 3: YYYY
    match = re.fullmatch(r'(\d{4})', date_str)
    if match:
        year = int(match.group(1))
        return datetime.datetime(year, 1, 1), date_str

    # Case 4: Month YYYY
    match = re.fullmatch(r'(\w+) (\d{4})', date_str)
    if match:
        try:
            target_date = datetime.datetime.strptime(date_str, "%B %Y")
            return target_date, date_str
        except ValueError:
            return None, date_str

    # Case 5: YYYY-QX
    match = re.fullmatch(r'(\d{4})-Q(\d)', date_str)
    if match:
        year, quarter = int(match.group(1)), int(match.group(2))
        month = (quarter - 1) * 3 + 1
        return datetime.datetime(year, month, 1), date_str

    # Case 6: YYYY Season
    match = re.fullmatch(r'(\d{4}) (Spring|Summer|Autumn|Fall|Winter)', date_str, re.IGNORECASE)
    if match:
        year = int(match.group(1))
        season_map = {"spring": 3, "summer": 6, "autumn": 9, "fall": 9, "winter": 12}
        month = season_map[match.group(2).lower()]
        return datetime.datetime(year, month, 1), date_str

    return None, date_str


def extract_and_sort_events(data_dir, pledge_date, pledge_author, claim, suggestion_meta):

    events = []

    # url_path = os.path.join(data_dir, "augmented_search_results.tsv")
    # url_query_dict = extract_columns_to_dict(file_path=url_path, delimiter='\t')
    
    pledge = claim.strip()

    file_path = os.path.join(data_dir, "gpt4_event_extraction", "gpt4o_results_0_claim.json")
    gpt4_results_json = load_json(file_path)

    # print(gpt4_results_json)
    train_file_path = hf_hub_download(
        repo_id="PledgeTracker/demo_feedback",     
        filename="train_useful.json",              
        repo_type="dataset",                      
        token=os.environ["HF_TOKEN"]              
    )

    with open(train_file_path, "r", encoding="utf-8") as f:
        train_data = json.load(f)
        # print(train_data[0])

    

    instruction_path = hf_hub_download(
                repo_id="PledgeTracker/demo_feedback",   
                filename="instruction.txt",            
                repo_type="dataset",                     
                token=os.environ["HF_TOKEN"]            
            )
    
    instruction = open(instruction_path, "r").read()
    
    map_file_path = hf_hub_download(
        repo_id="PledgeTracker/demo_feedback",     
        filename="mapping.txt",              
        repo_type="dataset",                      
        token=os.environ["HF_TOKEN"]              
    )
    mapping_f = open(map_file_path, "r").readlines()
    mapping = {}

    for map_id, line in enumerate(mapping_f):
        mapping[map_id] = int(line.strip())

    ICL_id = None
    if suggestion_meta:
        try:
            idx = int(suggestion_meta["index"])
            ICL_id = mapping.get(idx)
            print(f"[Suggestion] index: {idx} → pledge_id: {ICL_id}")
        except Exception as e:
            print(f"[Mapping error]: {e}")

    for doc in gpt4_results_json:
        mete_date = doc["date"]
        for event in doc.get("output", {}).get("events", []):
            parsed_date, original_date = parse_date(event["date"])

            if parsed_date:
                parsed_date_str = parsed_date.strftime("%Y-%m-%d")
                if parsed_date_str != mete_date:
                    event_date_and_pub_date = f"{parsed_date_str} ({mete_date})"
                else:
                    event_date_and_pub_date = parsed_date_str

                test_instance = f"Pledge: {pledge} (Speaker: {pledge_author}; Pledge Date: {pledge_date})\nEvent Summary: {event['event']} (Event Date: {original_date})\nIs this event summary useful to track the fulfilment of this pledge"

                label, score = gpt_eval(test_instance, train_data, instruction, suggestion_meta, ICL_id=ICL_id)

                URL = doc["url"]
                events.append({
                    "date": original_date,  
                    "event date (publication date if different)": event_date_and_pub_date,
                    "event": event["event"],
                    "url": URL,
                    "label": label,
                    "confident": score,
                })
    
    events.sort(key=lambda x: parse_date(x["date"])[0], reverse=True)
    return events