File size: 5,429 Bytes
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from datetime import datetime
import subprocess
from huggingface_hub import hf_hub_download
import json

def run_hero_reranking(pipeline_base_dir, suggestion_meta):
    base_dir = f"{pipeline_base_dir}"
    hero_dir = os.path.join(base_dir, "hero")
    os.makedirs(hero_dir, exist_ok=True)

    if suggestion_meta:
        hyde_path = hf_hub_download(
                repo_id="PledgeTracker/demo_feedback",   
                filename="manifesto_icl_hyde_fc.json",            
                repo_type="dataset",                     
                token=os.environ["HF_TOKEN"]            
            )
        with open(hyde_path, "r", encoding="utf-8") as f:
            all_hyde_data = json.load(f)

        idx = suggestion_meta["index"]
        single_hyde = [all_hyde_data[idx]]
        save_path = os.path.join(hero_dir, "manifesto_icl_hyde_fc.json")
        with open(save_path, "w", encoding="utf-8") as f:
            json.dump(single_hyde, f, indent=2)
    
    hyde_output = os.path.join(hero_dir, "manifesto_icl_hyde_fc.json")

    def safe_run(cmd, timeout=600):
        try:
            print(f"πŸ‘‰ Running: {' '.join(str(x) for x in cmd)}")
            subprocess.run(cmd, check=True, timeout=timeout)
        except subprocess.CalledProcessError as e:
            print(f"[❌ ERROR] Subprocess failed: {e}")
            if e.stderr:
                print("[stderr]:", e.stderr.decode())
            raise
        except subprocess.TimeoutExpired:
            print(f"[❌ TIMEOUT] Command timed out: {' '.join(cmd)}")
            raise

    # Step 3.2: retrieval
    print("πŸ” Step 3.2: Retrieval from knowledge store ...")
    knowledge_store_dir = os.path.join(base_dir, "augmented_data_store")
    retrieval_output = os.path.join(hero_dir, "manifesto_icl_retrieval_top_k_QA.json")

    if not os.path.exists(retrieval_output):
        safe_run([
            "python", "system/baseline/retrieval_optimized.py",
            "--knowledge_store_dir", knowledge_store_dir,
            "--target_data", hyde_output,
            "--json_output", retrieval_output,
        ])

    # Step 3.3: reranking
    print("🏷️ Step 3.3: Reranking retrieved evidence ...")
    rerank_output = os.path.join(hero_dir, "manifesto_icl_reranking_top_k_QA.json")

    if not os.path.exists(rerank_output):
        safe_run([
            "python", "system/baseline/reranking_optimized.py",
            "--target_data", retrieval_output,
            "--json_output", rerank_output,
            "--top_k", str(50),
        ])

    return {
        "hyde": hyde_output,
        "retrieved": retrieval_output,
        "reranked": rerank_output,
    }


def run_hero_pipeline(pipeline_base_dir):
    base_dir = f"{pipeline_base_dir}"
    hero_dir = os.path.join(base_dir, "hero")
    os.makedirs(hero_dir, exist_ok=True)

    target_data = os.path.join(base_dir, "claim.json")
    hyde_output = os.path.join(hero_dir, "manifesto_icl_hyde_fc.json")

    def safe_run(cmd, timeout=600):
        try:
            print(f"πŸ‘‰ Running: {' '.join(cmd)}")
            subprocess.run(cmd, check=True, timeout=timeout)
        except subprocess.CalledProcessError as e:
            print(f"[❌ ERROR] Subprocess failed: {e}")
            if e.stderr:
                print("[stderr]:", e.stderr.decode())
            raise
        except subprocess.TimeoutExpired:
            print(f"[❌ TIMEOUT] Command timed out: {' '.join(cmd)}")
            raise

    # Step 3.1: hyde_fc_generation
    if not os.path.exists(hyde_output):
        print("🧠 Step 3.1: HyDE ICL generation ...")
        safe_run([
            "python", "system/baseline/hyde_fc_generation_optimized.py",
            "--target_data", target_data,
            "--json_output", hyde_output
        ])

    # Step 3.2: retrieval
    print("πŸ” Step 3.2: Retrieval from knowledge store ...")
    knowledge_store_dir = os.path.join(base_dir, "initial_data_store")
    retrieval_output = os.path.join(hero_dir, "manifesto_icl_retrieval_top_k.json")

    if not os.path.exists(retrieval_output):
        safe_run([
            "python", "system/baseline/retrieval_optimized.py",
            "--knowledge_store_dir", knowledge_store_dir,
            "--target_data", hyde_output,
            "--json_output", retrieval_output
        ])

    # Step 3.3: reranking
    print("🏷️ Step 3.3: Reranking retrieved evidence ...")
    rerank_output = os.path.join(hero_dir, "manifesto_icl_reranking_top_k.json")

    if not os.path.exists(rerank_output):
        safe_run([
            "python", "system/baseline/reranking_optimized.py",
            "--target_data", retrieval_output,
            "--json_output", rerank_output
        ])

    # Step 3.4: question generation
    print("❓ Step 3.4: Generating QA pairs ...")
    reference_corpus = "system/baseline/train.json"
    qa_output = os.path.join(hero_dir, "manifesto_icl_top_k_qa.json")

    if not os.path.exists(qa_output):
        safe_run([
            "python", "system/baseline/question_generation_optimized.py",
            "--reference_corpus", reference_corpus,
            "--top_k_target_knowledge", rerank_output,
            "--output_questions", qa_output,
            "--model", "meta-llama/Meta-Llama-3.1-8B-Instruct"
        ])

    return {
        "hyde": hyde_output,
        "retrieved": retrieval_output,
        "reranked": rerank_output,
        "qa_pairs": qa_output
    }