File size: 8,721 Bytes
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcd14e1
35b3f62
 
fcd14e1
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import torch
import gc
from transformers import AutoModel, AutoTokenizer
from sentence_transformers import SentenceTransformer
import numpy as np
import json
import argparse
import time
from datetime import datetime, timedelta
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def encode_text(model, tokenizer, texts, batch_size=8, max_length=512):
    """Encode texts to embeddings using AutoModel"""
    all_embeddings = []
    
    for i in range(0, len(texts), batch_size):
        batch = texts[i:i + batch_size]
        
        # Tokenize
        encoded_input = tokenizer(
            batch,
            padding=True,
            truncation=True,
            max_length=max_length,
            return_tensors='pt'
        ).to(model.device)
        
        # Compute token embeddings
        with torch.no_grad():
            with torch.cuda.amp.autocast(dtype=torch.bfloat16):
                model_output = model(**encoded_input)
                # Use mean pooling
                attention_mask = encoded_input['attention_mask']
                token_embeddings = model_output[0]  # First element contains token embeddings
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
                embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
                all_embeddings.append(embeddings.cpu().numpy())
        
        # Clear some memory
        if i % (batch_size * 4) == 0:
            torch.cuda.empty_cache()
            gc.collect()
    
    return np.vstack(all_embeddings)

def compute_similarity(emb1, emb2):
    """Compute cosine similarity between embeddings"""
    return np.dot(emb1, emb2.T) / (
        np.linalg.norm(emb1, axis=1).reshape(-1, 1) * 
        np.linalg.norm(emb2, axis=1).reshape(1, -1)
    )

def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery: {query}'

def preprocess_sentences(sentence1, sentence2):
    vectorizer = TfidfVectorizer().fit_transform([sentence1, sentence2])
    vectors = vectorizer.toarray()
    
    cosine_sim = cosine_similarity(vectors)
    similarity_score = cosine_sim[0][1]
    return similarity_score

def remove_trailing_special_chars(text):
    return re.sub(r'[\W_]+$', '', text)

def remove_special_chars_except_spaces(text):
    return re.sub(r'[^\w\s]+', '', text)

def select_top_k(claim, results, top_k):
    '''
    remove sentence of similarity claim
    '''
    dup_check = set()
    top_k_sentences_urls = []
    
    i = 0
    # print(results)
    claim = remove_special_chars_except_spaces(claim).lower()
    while len(top_k_sentences_urls) < top_k and i < len(results):
        # print(i)
        sentence = remove_special_chars_except_spaces(results[i]['sentence']).lower()
        
        if sentence not in dup_check:
            if preprocess_sentences(claim, sentence) > 0.97:
                dup_check.add(sentence)
                continue
            
            if claim in sentence:
                if len(claim) / len(sentence) > 0.92:
                    dup_check.add(sentence)
                    continue 
            
            top_k_sentences_urls.append({
                'sentence': results[i]['sentence'],
                'url': results[i]['url']}
            )
        i += 1
        
    return top_k_sentences_urls

# def format_time(seconds):
#     """Format time duration nicely."""
#     return str(timedelta(seconds=round(seconds)))


def compute_embeddings_batched(model, texts, batch_size=8):
    """Compute embeddings in smaller batches to manage memory"""
    all_embeddings = []
    for i in range(0, len(texts), batch_size):
        batch = texts[i:i + batch_size]
        with torch.cuda.amp.autocast(dtype=torch.bfloat16):  # Use bfloat16
            emb = model.encode(batch, batch_size=len(batch), show_progress_bar=False)
            all_embeddings.append(emb)
        
        # Clear some memory
        if i % (batch_size * 4) == 0:
            torch.cuda.empty_cache()
            gc.collect()
    
    return np.vstack(all_embeddings)

def main(args):

    
    device = "cuda" if torch.cuda.is_available() else 'cpu'
    print(f"Using device: {device}")
    
    # Load model and tokenizer
    model = AutoModel.from_pretrained(
        "Salesforce/SFR-Embedding-2_R",
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained("Salesforce/SFR-Embedding-2_R")
    
    # Load target examples
    target_examples = []
    with open(args.target_data, "r", encoding="utf-8") as json_file:
        for i, line in enumerate(json_file):
            try:
                example = json.loads(r"{}".format(line))
                target_examples.append(example)
            except:
                print(f"CURRENT LINE broken {i}")
    
    if args.end == -1:
        args.end = len(target_examples)
    
    files_to_process = list(range(args.start, args.end))
    total = len(files_to_process)
    
    task = 'Given a web search query, retrieve relevant passages that answer the query'
    
    with open(args.json_output, "w", encoding="utf-8") as output_json:
        done = 0
        for idx, example in enumerate(target_examples):
            if idx in files_to_process:
                print(f"Processing claim {example['claim_id']}... Progress: {done + 1} / {total}")
                
                claim = example['claim']
                query = [get_detailed_instruct(task, claim)] + [
                    get_detailed_instruct(task, le) 
                    for le in example['hypo_fc_docs'] 
                    if len(le.strip()) > 0
                ]
                query_length = len(query)
                sentences = [sent['sentence'] for sent in example[f'top_{5000}']][:args.retrieved_top_k]
                
                # st = time.time()
                try:
                    # Process query embeddings
                    query_embeddings = encode_text(model, tokenizer, query, batch_size=4)
                    avg_emb_q = np.mean(query_embeddings, axis=0)
                    hyde_vector = avg_emb_q.reshape((1, -1))
                    
                    # Process sentence embeddings in smaller chunks
                    sentence_embeddings = encode_text(
                        model,
                        tokenizer,
                        sentences, 
                        batch_size=args.batch_size
                    )
                    
                    # Compute similarities in chunks to save memory
                    chunk_size = 1000
                    all_scores = []
                    for i in range(0, len(sentence_embeddings), chunk_size):
                        chunk = sentence_embeddings[i:i + chunk_size]
                        chunk_scores = compute_similarity(hyde_vector, chunk)[0]
                        all_scores.extend(chunk_scores)
                    
                    scores = np.array(all_scores)
                    top_k_idx = np.argsort(scores)[::-1]
                    results = [example['top_5000'][i] for i in top_k_idx]
                    top_k_sentences_urls = select_top_k(claim, results, args.top_k)
                    
                    # print(f"Top {args.top_k} retrieved. Time elapsed: {time.time() - st:.2f}s")
                    
                    json_data = {
                        "claim_id": example['claim_id'],
                        "claim": claim,
                        f"top_{args.top_k}": top_k_sentences_urls
                    }
                    output_json.write(json.dumps(json_data, ensure_ascii=False) + "\n")
                    output_json.flush()
                    
                except RuntimeError as e:
                    print(f"Error processing claim {example['claim_id']}: {e}")
                    continue
                
                done += 1
    

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--target_data", default="data_store/dev_retrieval_top_k.json")
    parser.add_argument("--retrieved_top_k", type=int, default=5000)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("-o", "--json_output", type=str, default="data_store/dev_reranking_top_k.json")
    parser.add_argument("--batch_size", type=int, default=32)
    parser.add_argument("-s", "--start", type=int, default=0)
    parser.add_argument("-e", "--end", type=int, default=-1)
    args = parser.parse_args()
    
    main(args)