File size: 8,155 Bytes
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a32dd35
 
 
 
 
 
 
 
 
 
35b3f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import json
import datetime
import re
import pandas as pd
import os, argparse
import random
import csv
from openai import OpenAI
from huggingface_hub import hf_hub_download
import json
import os



def gpt_4o_useful(input):
    client=OpenAI(api_key=os.environ.get("OAI"))
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": input
                    }
                ]
            }
        ],
        response_format={"type": "text"},
        temperature=0.0000000001,
        max_tokens=4096,
        top_p=0,
        frequency_penalty=0,
        presence_penalty=0,
        logprobs=True
    )

    text = response.choices[0].message.content

    if response.choices[0].logprobs and response.choices[0].logprobs.content:
        first_token_logprob = response.choices[0].logprobs.content[0]
        token = first_token_logprob.token
        logprob = first_token_logprob.logprob
    else:
        token = None
        logprob = None

    return text, token, logprob



def get_ICL(data, top_k=None):

    ICL =""
    if top_k == None:
        data = data
    else:
        # print(data)
        data = data[:top_k]
    for line in data:
        # line = json.loads(line)
        pledge = line["pledge"]
        event = line["event_description"]
        time = line["event_date"]
        input=f"Pledge: {pledge}\nEvent Summary: {event} (Event Date: {time})\nIs this event summary useful?"
        input = input.strip()
        output = line["label"].strip()
        ICL = f"{ICL}Input: {input}\nOutput: {output}\n\n"
    return ICL

def load_json(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    return data


def gpt_eval(test_instance, train_data, instruction, suggestion_meta, ICL_id=None):

    if suggestion_meta:
        # print(ICL_id)
        
        train_data = [line for line in train_data if str(line.get("pledge_id")) == str(ICL_id)]

    else:
        random.seed(42)
        random.shuffle(train_data)

    ICL = get_ICL(train_data, top_k=50)
    # print(ICL)
    input = f"{instruction}\nBelow are examples:\n\n{ICL}Now, please assign a label for the below instance.\nInput: {test_instance}\nOutput:"

    try:
        text, tokens, logprobs = gpt_4o_useful(input)
    except Exception as e:
        print(e)
        tokens = None
        logprobs = None

    return tokens, logprobs

def extract_columns_to_dict(file_path, delimiter='\t'):

    data_dict = {}

    with open(file_path, mode='r', encoding='utf-8') as file:
        reader = csv.reader(file, delimiter=delimiter)
        for row in reader:
            if len(row) >= 4:  
                key = row[2]  
                value = row[3]  
                data_dict[key] = value 

    return data_dict


def parse_date(date_str):
    try:
        return datetime.datetime.strptime(date_str, "%Y-%m-%d"), date_str
    except ValueError:
        match = re.search(r'(.*) \(relative to (\d{4}-\d{2}-\d{2})\)', date_str)
        if match:
            reference = datetime.datetime.strptime(match.group(2), "%Y-%m-%d")
            if "Last month" in match.group(1):
                return reference - datetime.timedelta(days=30), date_str
            elif "Yesterday" in match.group(1):
                return reference - datetime.timedelta(days=1), date_str
            elif "Last week" in match.group(1):
                return reference - datetime.timedelta(days=7), date_str
            elif "This week" in match.group(1):
                return reference, date_str
        
        # 处理不同格式的日期
        match = re.fullmatch(r'\d{4}', date_str)  # 处理年份格式: '2014'
        if match:
            return datetime.datetime(int(date_str), 1, 1), date_str
        
        match = re.fullmatch(r'(\w+) (\d{4})', date_str)  # 处理月份+年份格式: 'November 2023'
        if match:
            try:
                return datetime.datetime.strptime(date_str, "%B %Y"), date_str
            except ValueError:
                return None, date_str
        
        match = re.fullmatch(r'(\d{4})-Q(\d)', date_str)  # 处理季度格式: '2024-Q1'
        if match:
            year, quarter = int(match.group(1)), int(match.group(2))
            month = (quarter - 1) * 3 + 1
            return datetime.datetime(year, month, 1), date_str
        
        match = re.fullmatch(r'(\d{4}) (Spring|Summer|Autumn|Fall|Winter)', date_str, re.IGNORECASE)  # 处理季度名称格式: '2023 Autumn' 或 '2023 Fall'
        if match:
            year = int(match.group(1))
            season_map = {"Spring": 3, "Summer": 6, "Autumn": 9, "Fall": 9, "Winter": 12}
            month = season_map[match.group(2).capitalize()]
            return datetime.datetime(year, month, 1), date_str
        
        return None, date_str

def extract_and_sort_events(data_dir, pledge_date, pledge_author, claim, suggestion_meta):

    events = []

    # url_path = os.path.join(data_dir, "augmented_search_results.tsv")
    # url_query_dict = extract_columns_to_dict(file_path=url_path, delimiter='\t')
    
    pledge = claim.strip()

    file_path = os.path.join(data_dir, "gpt4_event_extraction", "gpt4o_results_0_claim.json")
    gpt4_results_json = load_json(file_path)

    print(gpt4_results_json)
    train_file_path = hf_hub_download(
        repo_id="PledgeTracker/demo_feedback",     
        filename="train_useful.json",              
        repo_type="dataset",                      
        token=os.environ["HF_TOKEN"]              
    )

    with open(train_file_path, "r", encoding="utf-8") as f:
        train_data = json.load(f)
        print(train_data[0])

    

    instruction_path = hf_hub_download(
                repo_id="PledgeTracker/demo_feedback",   
                filename="instruction.txt",            
                repo_type="dataset",                     
                token=os.environ["HF_TOKEN"]            
            )
    
    instruction = open(instruction_path, "r").read()
    
    map_file_path = hf_hub_download(
        repo_id="PledgeTracker/demo_feedback",     
        filename="mapping.txt",              
        repo_type="dataset",                      
        token=os.environ["HF_TOKEN"]              
    )
    mapping_f = open(map_file_path, "r").readlines()
    mapping = {}

    for map_id, line in enumerate(mapping_f):
        mapping[map_id] = int(line.strip())

    ICL_id = None
    if suggestion_meta:
        try:
            idx = int(suggestion_meta["index"])
            ICL_id = mapping.get(idx)
            print(f"[Suggestion] index: {idx} → pledge_id: {ICL_id}")
        except Exception as e:
            print(f"[Mapping error]: {e}")

    for doc in gpt4_results_json:
        mete_date = doc["date"]
        for event in doc.get("output", {}).get("events", []):
            parsed_date, original_date = parse_date(event["date"])
            if parsed_date:
                if mete_date!= parsed_date:
                    event_date_and_pub_date = original_date+f" ({mete_date})"
                else:
                    event_date_and_pub_date = original_date
                
                test_instance = f"Pledge: {pledge} (Speaker: {pledge_author}; Pledge Date: {pledge_date})\nEvent Summary: {event['event']} (Event Date: {original_date})\nIs this event summary useful?"

                print(test_instance)

                label, score = gpt_eval(test_instance, train_data, instruction, suggestion_meta, ICL_id=ICL_id)

                URL = doc["url"]
                events.append({
                    "date": original_date, 
                    "event date (publication date if different)": event_date_and_pub_date,
                    "event": event["event"],
                    "url": URL,
                    "label": label,
                    "confident": score
                })
    
    # 按时间排序
    events.sort(key=lambda x: parse_date(x["date"])[0], reverse=True)
    return events