Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import logging | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import FP32LayerNorm | |
class AttnProcessor2_0: | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
rotary_emb: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
encoder_hidden_states = hidden_states | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
if rotary_emb is not None: | |
def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): | |
x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2))) | |
x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4) | |
return x_out.type_as(hidden_states) | |
query = apply_rotary_emb(query, rotary_emb) | |
key = apply_rotary_emb(key, rotary_emb) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
hidden_states = hidden_states.type_as(query) | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class TimeEmbedding(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
time_freq_dim: int, | |
time_proj_dim: int | |
): | |
super().__init__() | |
self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim) | |
self.act_fn = nn.SiLU() | |
self.time_proj = nn.Linear(dim, time_proj_dim) | |
def forward( | |
self, | |
timestep: torch.Tensor, | |
): | |
timestep = self.timesteps_proj(timestep) | |
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype | |
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8: | |
timestep = timestep.to(time_embedder_dtype) | |
temb = self.time_embedder(timestep).type_as(self.time_proj.weight.data) | |
timestep_proj = self.time_proj(self.act_fn(temb)) | |
return temb, timestep_proj | |
class RotaryPosEmbed(nn.Module): | |
def __init__( | |
self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0 | |
): | |
super().__init__() | |
self.attention_head_dim = attention_head_dim | |
self.patch_size = patch_size | |
self.max_seq_len = max_seq_len | |
h_dim = w_dim = 2 * (attention_head_dim // 6) | |
t_dim = attention_head_dim - h_dim - w_dim | |
freqs = [] | |
for dim in [t_dim, h_dim, w_dim]: | |
freq = get_1d_rotary_pos_embed( | |
dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64 | |
) | |
freqs.append(freq) | |
self.freqs = torch.cat(freqs, dim=1) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p_t, p_h, p_w = self.patch_size | |
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w | |
self.freqs = self.freqs.to(hidden_states.device) | |
freqs = self.freqs.split_with_sizes( | |
[ | |
self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6), | |
self.attention_head_dim // 6, | |
self.attention_head_dim // 6, | |
], | |
dim=1, | |
) | |
freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1) | |
freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1) | |
freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1) | |
freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1) | |
return freqs | |
class TransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
ffn_dim: int, | |
num_heads: int, | |
qk_norm: str = "rms_norm_across_heads", | |
cross_attn_norm: bool = False, | |
eps: float = 1e-6, | |
added_kv_proj_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_heads, | |
kv_heads=num_heads, | |
dim_head=dim // num_heads, | |
qk_norm=qk_norm, | |
eps=eps, | |
bias=True, | |
cross_attention_dim=None, | |
out_bias=True, | |
processor=AttnProcessor2_0(), | |
) | |
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate") | |
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=False) | |
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
rotary_emb: torch.Tensor, | |
) -> torch.Tensor: | |
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = ( | |
self.scale_shift_table + temb.float() | |
).chunk(6, dim=1) | |
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states) | |
attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb) | |
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states) | |
norm_hidden_states = (self.norm2(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as( | |
hidden_states | |
) | |
ff_output = self.ffn(norm_hidden_states) | |
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states) | |
return hidden_states | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
_skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"] | |
_no_split_modules = ["TransformerBlock"] | |
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2"] | |
def __init__( | |
self, | |
patch_size: Tuple[int] = (1, 2, 2), | |
num_attention_heads: int = 40, | |
attention_head_dim: int = 128, | |
in_channels: int = 16, | |
out_channels: int = 16, | |
freq_dim: int = 256, | |
ffn_dim: int = 13824, | |
num_layers: int = 40, | |
cross_attn_norm: bool = True, | |
qk_norm: Optional[str] = "rms_norm_across_heads", | |
eps: float = 1e-6, | |
added_kv_proj_dim: Optional[int] = None, | |
rope_max_seq_len: int = 1024 | |
) -> None: | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
out_channels = out_channels or in_channels | |
# 1. Patch & position embedding | |
self.rope = RotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len) | |
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size) | |
# 2. Condition embeddings | |
self.condition_embedder = TimeEmbedding( | |
dim=inner_dim, | |
time_freq_dim=freq_dim, | |
time_proj_dim=inner_dim * 6, | |
) | |
# 3. Transformer blocks | |
self.blocks = nn.ModuleList( | |
[ | |
TransformerBlock( | |
inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim | |
) | |
for _ in range(num_layers) | |
] | |
) | |
# 4. Output norm & projection | |
self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False) | |
self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size)) | |
self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p_t, p_h, p_w = self.config.patch_size | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p_h | |
post_patch_width = width // p_w | |
rotary_emb = self.rope(hidden_states) | |
hidden_states = self.patch_embedding(hidden_states) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
temb, timestep_proj = self.condition_embedder( | |
timestep | |
) | |
timestep_proj = timestep_proj.unflatten(1, (6, -1)) | |
for block in self.blocks: | |
hidden_states = block(hidden_states, timestep_proj, rotary_emb) | |
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1) | |
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape( | |
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1 | |
) | |
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) | |
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
return Transformer2DModelOutput(sample=output) | |