Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,30 +3,36 @@ import streamlit as st
|
|
| 3 |
import tempfile
|
| 4 |
import base64
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
import soundfile as sf
|
| 8 |
import io
|
| 9 |
-
import glob
|
| 10 |
-
import shutil
|
| 11 |
-
import time
|
| 12 |
from hf_transcriber import HFTranscriber
|
| 13 |
from huggingface_hub import login
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
if
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
login(token=HUGGINGFACE_TOKEN)
|
| 24 |
-
st.success("
|
| 25 |
-
|
| 26 |
-
st.warning(
|
| 27 |
-
|
| 28 |
-
st.warning("
|
| 29 |
-
st.info("Create a .env file with HUGGINGFACE_TOKEN=your_token_here or set it in your environment variables.")
|
| 30 |
|
| 31 |
# Configuration dictionary to store app settings
|
| 32 |
app_config = {
|
|
@@ -87,293 +93,78 @@ def get_binary_file_downloader_html(bin_file, file_label='File'):
|
|
| 87 |
def save_uploaded_file(uploaded_file):
|
| 88 |
"""Save uploaded file to a temporary file and return the path."""
|
| 89 |
try:
|
| 90 |
-
|
| 91 |
-
os.makedirs("temp_uploads", exist_ok=True)
|
| 92 |
-
|
| 93 |
-
# Create a temporary file with a proper extension
|
| 94 |
-
file_ext = os.path.splitext(uploaded_file.name)[1]
|
| 95 |
-
with tempfile.NamedTemporaryFile(delete=False, dir="temp_uploads", suffix=file_ext) as tmp_file:
|
| 96 |
tmp_file.write(uploaded_file.getvalue())
|
| 97 |
return tmp_file.name
|
| 98 |
except Exception as e:
|
| 99 |
st.error(f"Error saving file: {str(e)}")
|
| 100 |
return None
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
def main():
|
| 103 |
-
st.set_page_config(page_title="Audio to Sheet Music Transcriber", layout="wide")
|
| 104 |
-
|
| 105 |
st.title("🎵 Audio to Sheet Music Transcriber")
|
| 106 |
st.markdown("### Convert monophonic audio to sheet music")
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
st.
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
""", icon="⚠️")
|
| 114 |
-
|
| 115 |
-
# Initialize session state for recording if enabled
|
| 116 |
-
if app_config['RECORDING_ENABLED']:
|
| 117 |
-
if 'recorder' not in st.session_state:
|
| 118 |
-
try:
|
| 119 |
-
st.session_state.recorder = app_config.get('AudioRecorder')()
|
| 120 |
-
st.session_state.recording = False
|
| 121 |
-
except Exception as e:
|
| 122 |
-
st.error(f"Failed to initialize audio recorder: {str(e)}")
|
| 123 |
-
app_config['RECORDING_ENABLED'] = False
|
| 124 |
-
|
| 125 |
-
# Sidebar settings
|
| 126 |
-
st.sidebar.header("🔧 Transcription Settings")
|
| 127 |
-
|
| 128 |
-
# Model selection
|
| 129 |
-
use_hf = st.sidebar.checkbox("Use Hugging Face Model", value=True,
|
| 130 |
-
help="Use pre-trained models from Hugging Face for better accuracy")
|
| 131 |
-
|
| 132 |
-
# Initialize model_name with a default value
|
| 133 |
-
model_name = "openai/whisper-small" # Default to whisper for better accuracy
|
| 134 |
-
if use_hf:
|
| 135 |
model_options = {
|
| 136 |
"Whisper Small (Recommended)": "openai/whisper-small",
|
| 137 |
"Whisper Base": "openai/whisper-base",
|
| 138 |
-
"Wav2Vec2 Base": "facebook/wav2vec2-base-960h"
|
| 139 |
-
"SpeechT5": "microsoft/speecht5_asr"
|
| 140 |
}
|
| 141 |
|
| 142 |
-
|
| 143 |
"Select Model",
|
| 144 |
options=list(model_options.keys()),
|
| 145 |
-
index=0
|
|
|
|
| 146 |
)
|
| 147 |
-
model_name = model_options[
|
| 148 |
|
| 149 |
-
#
|
| 150 |
-
st.
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
input_method = st.sidebar.radio(
|
| 158 |
-
"Choose input method:",
|
| 159 |
-
input_methods,
|
| 160 |
-
help="Select how you want to provide the audio for transcription"
|
| 161 |
)
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
# Create a temporary file with the correct extension
|
| 176 |
-
file_ext = os.path.splitext(uploaded_file.name)[1].lower()
|
| 177 |
-
os.makedirs("temp_uploads", exist_ok=True)
|
| 178 |
-
|
| 179 |
-
# Create a temporary file path
|
| 180 |
-
temp_file_path = os.path.join("temp_uploads", f"upload_{int(time.time())}{file_ext}")
|
| 181 |
-
|
| 182 |
-
# Save the file
|
| 183 |
-
with open(temp_file_path, "wb") as f:
|
| 184 |
-
f.write(file_content)
|
| 185 |
-
|
| 186 |
-
# Store the file path in session state
|
| 187 |
-
st.session_state.last_uploaded_file = temp_file_path
|
| 188 |
-
|
| 189 |
-
# Display the audio player
|
| 190 |
-
st.audio(temp_file_path, format=f'audio/{file_ext[1:]}' if file_ext else 'audio/wav')
|
| 191 |
-
|
| 192 |
-
except Exception as e:
|
| 193 |
-
st.error(f"Error processing uploaded file: {str(e)}")
|
| 194 |
-
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
| 195 |
-
try:
|
| 196 |
-
os.remove(temp_file_path)
|
| 197 |
-
except:
|
| 198 |
-
pass
|
| 199 |
-
|
| 200 |
-
elif input_method == "Record Live Audio" and app_config['RECORDING_ENABLED']:
|
| 201 |
-
st.header("🎤 Live Audio Recording")
|
| 202 |
-
|
| 203 |
-
# Show available audio devices
|
| 204 |
-
# Initialize with default values
|
| 205 |
-
selected_device = None
|
| 206 |
-
|
| 207 |
-
try:
|
| 208 |
-
if 'list_audio_devices' not in app_config:
|
| 209 |
-
st.warning("⚠️ Audio device listing not available. Using default settings.")
|
| 210 |
-
app_config['RECORDING_ENABLED'] = True # Keep recording enabled but with fallback
|
| 211 |
-
else:
|
| 212 |
-
devices = app_config['list_audio_devices']()
|
| 213 |
-
if not devices:
|
| 214 |
-
st.warning("⚠️ No audio input devices found. Using fallback mode.")
|
| 215 |
-
app_config['RECORDING_ENABLED'] = True # Keep recording enabled but with fallback
|
| 216 |
-
else:
|
| 217 |
-
# Filter out devices with no input channels
|
| 218 |
-
input_devices = [d for d in devices if d.get('max_input_channels', 0) > 0]
|
| 219 |
-
|
| 220 |
-
if not input_devices:
|
| 221 |
-
st.warning("⚠️ No input devices with recording capability found. Using fallback mode.")
|
| 222 |
-
app_config['RECORDING_ENABLED'] = True # Keep recording enabled but with fallback
|
| 223 |
-
else:
|
| 224 |
-
# Create a list of display strings for the dropdown
|
| 225 |
-
device_options = [f"{i}: {d['name']} (Channels: {d.get('input_channels', 1)})"
|
| 226 |
-
for i, d in enumerate(input_devices)]
|
| 227 |
-
|
| 228 |
-
# Add a default option
|
| 229 |
-
device_options.insert(0, "Default: Use system default device")
|
| 230 |
-
|
| 231 |
-
selected_device_str = st.selectbox(
|
| 232 |
-
"Select audio device:",
|
| 233 |
-
options=device_options,
|
| 234 |
-
index=0
|
| 235 |
-
)
|
| 236 |
-
|
| 237 |
-
# If default is selected, use None to let sounddevice choose
|
| 238 |
-
if selected_device_str == "Default: Use system default device":
|
| 239 |
-
selected_device = None
|
| 240 |
-
else:
|
| 241 |
-
# Get the device index from the selected string
|
| 242 |
-
selected_device = device_options.index(selected_device_str) - 1 # Adjust for default option
|
| 243 |
-
|
| 244 |
-
# Ensure the index is within bounds
|
| 245 |
-
if selected_device >= len(input_devices):
|
| 246 |
-
selected_device = None
|
| 247 |
-
except Exception as e:
|
| 248 |
-
st.warning(f"⚠️ Warning: Could not load audio devices: {str(e)}. Using fallback mode.")
|
| 249 |
-
app_config['RECORDING_ENABLED'] = True # Keep recording enabled but with fallback
|
| 250 |
-
|
| 251 |
-
col1, col2 = st.columns(2)
|
| 252 |
-
|
| 253 |
-
with col1:
|
| 254 |
-
# Check if recording is enabled and we have a valid recorder
|
| 255 |
-
if not app_config.get('RECORDING_ENABLED', False):
|
| 256 |
-
st.warning("⚠️ Recording is not available in the current environment.")
|
| 257 |
-
st.button("🎤 Start Recording", disabled=True)
|
| 258 |
-
else:
|
| 259 |
-
if st.button("🎤 Start Recording",
|
| 260 |
-
disabled=st.session_state.get('recording', False),
|
| 261 |
-
key='start_recording_btn'):
|
| 262 |
try:
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
st.session_state.recorder = AudioRecorder(device_index=selected_device)
|
| 267 |
-
|
| 268 |
-
print("Starting recording...")
|
| 269 |
-
# Show appropriate message based on device availability
|
| 270 |
-
if selected_device is None:
|
| 271 |
-
st.info("ℹ️ Using system default audio device. If no device is found, silent audio will be generated.")
|
| 272 |
-
|
| 273 |
-
if st.session_state.recorder.start_recording():
|
| 274 |
-
st.session_state.recording = True
|
| 275 |
-
st.session_state.recording_started = True
|
| 276 |
-
st.session_state.recording_error = None
|
| 277 |
-
print("Recording started successfully")
|
| 278 |
-
st.rerun()
|
| 279 |
-
else:
|
| 280 |
-
error_msg = "Failed to start recording. Please try again."
|
| 281 |
-
print(error_msg)
|
| 282 |
-
st.error(error_msg)
|
| 283 |
-
st.session_state.recording_error = error_msg
|
| 284 |
-
st.session_state.recording = False
|
| 285 |
-
st.session_state.recording_started = False
|
| 286 |
-
except Exception as e:
|
| 287 |
-
error_msg = f"Error starting recording: {str(e)}"
|
| 288 |
-
print(error_msg)
|
| 289 |
-
st.error(error_msg)
|
| 290 |
-
st.session_state.recording_error = error_msg
|
| 291 |
-
st.session_state.recording = False
|
| 292 |
-
st.session_state.recording_started = False
|
| 293 |
-
|
| 294 |
-
with col2:
|
| 295 |
-
if st.button("⏹️ Stop Recording",
|
| 296 |
-
disabled=not st.session_state.get('recording', False),
|
| 297 |
-
key='stop_recording_btn'):
|
| 298 |
-
try:
|
| 299 |
-
if 'recorder' in st.session_state and st.session_state.recorder is not None:
|
| 300 |
-
print("Stopping recording...")
|
| 301 |
-
|
| 302 |
-
# Stop the recording
|
| 303 |
-
audio_data = st.session_state.recorder.stop_recording()
|
| 304 |
-
|
| 305 |
-
if audio_data is None:
|
| 306 |
-
st.warning("No audio data was recorded")
|
| 307 |
-
st.session_state.recording = False
|
| 308 |
-
st.session_state.recording_started = False
|
| 309 |
-
return
|
| 310 |
-
|
| 311 |
-
# Ensure recordings directory exists
|
| 312 |
-
recordings_dir = os.path.abspath("recordings")
|
| 313 |
-
os.makedirs(recordings_dir, exist_ok=True)
|
| 314 |
-
|
| 315 |
-
# Generate filename with full path
|
| 316 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 317 |
-
filename = f"recording_{timestamp}.wav"
|
| 318 |
-
audio_file = os.path.join(recordings_dir, filename)
|
| 319 |
-
|
| 320 |
-
print(f"Saving recording to {audio_file}...")
|
| 321 |
-
try:
|
| 322 |
-
# Save with the full absolute path
|
| 323 |
-
saved_file = st.session_state.recorder.save_recording(audio_file)
|
| 324 |
-
if saved_file and os.path.exists(saved_file):
|
| 325 |
-
print(f"Successfully saved recording to {saved_file}")
|
| 326 |
-
st.session_state.last_recording = saved_file
|
| 327 |
-
st.session_state.last_recorded_audio = saved_file
|
| 328 |
-
|
| 329 |
-
# Clean up old recordings
|
| 330 |
-
clean_up_recordings(keep_last=5)
|
| 331 |
-
|
| 332 |
-
# Display success and audio player
|
| 333 |
-
st.success(f"Recording saved successfully!")
|
| 334 |
-
st.audio(saved_file)
|
| 335 |
-
|
| 336 |
-
# Rerun to update the UI
|
| 337 |
-
st.rerun()
|
| 338 |
-
else:
|
| 339 |
-
error_msg = "Failed to save recording. No audio data was captured."
|
| 340 |
-
print(error_msg)
|
| 341 |
-
st.error(error_msg)
|
| 342 |
-
st.session_state.recording_error = error_msg
|
| 343 |
-
|
| 344 |
-
except Exception as save_error:
|
| 345 |
-
error_msg = f"Error saving recording: {str(save_error)}"
|
| 346 |
-
print(f"Save error details: {error_msg}")
|
| 347 |
-
st.error(error_msg)
|
| 348 |
-
st.session_state.recording_error = error_msg
|
| 349 |
-
|
| 350 |
-
# Reset recording state
|
| 351 |
-
st.session_state.recording = False
|
| 352 |
-
st.session_state.recording_started = False
|
| 353 |
-
|
| 354 |
-
except Exception as e:
|
| 355 |
-
error_msg = f"Error stopping recording: {str(e)}"
|
| 356 |
-
print(error_msg)
|
| 357 |
-
st.error(error_msg)
|
| 358 |
-
st.session_state.recording_error = error_msg
|
| 359 |
-
|
| 360 |
-
# Ensure we reset the recording state
|
| 361 |
-
st.session_state.recording = False
|
| 362 |
-
st.session_state.recording_started = False
|
| 363 |
-
finally:
|
| 364 |
-
# Always clean up the recorder
|
| 365 |
-
if 'recorder' in st.session_state:
|
| 366 |
-
try:
|
| 367 |
-
st.session_state.recorder = None
|
| 368 |
-
except:
|
| 369 |
-
pass
|
| 370 |
-
|
| 371 |
-
# Don't use rerun() in finally as it can cause infinite loops
|
| 372 |
-
# The UI will update automatically due to Streamlit's reactivity
|
| 373 |
|
| 374 |
# Transcription Section
|
| 375 |
-
if
|
| 376 |
-
audio_file =
|
| 377 |
|
| 378 |
# Add model selection
|
| 379 |
model_options = {
|
|
@@ -489,12 +280,18 @@ def clean_up_recordings(keep_last=5):
|
|
| 489 |
|
| 490 |
if __name__ == "__main__":
|
| 491 |
# Create necessary directories
|
| 492 |
-
os.makedirs("recordings", exist_ok=True)
|
| 493 |
os.makedirs("outputs", exist_ok=True)
|
| 494 |
-
os.makedirs("temp_uploads", exist_ok=True)
|
| 495 |
-
|
| 496 |
-
# Clean up old files on startup
|
| 497 |
-
clean_up_recordings(keep_last=5)
|
| 498 |
|
| 499 |
-
# Run the
|
| 500 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import tempfile
|
| 4 |
import base64
|
| 5 |
import numpy as np
|
| 6 |
+
import time
|
| 7 |
from datetime import datetime
|
| 8 |
import soundfile as sf
|
| 9 |
import io
|
|
|
|
|
|
|
|
|
|
| 10 |
from hf_transcriber import HFTranscriber
|
| 11 |
from huggingface_hub import login
|
| 12 |
+
from dotenv import load_dotenv, find_dotenv
|
| 13 |
|
| 14 |
+
# Set page config first
|
| 15 |
+
st.set_page_config(
|
| 16 |
+
page_title="🎵 Audio to Sheet Music Transcriber",
|
| 17 |
+
page_icon="🎵",
|
| 18 |
+
layout="wide"
|
| 19 |
+
)
|
| 20 |
|
| 21 |
+
# Load environment variables
|
| 22 |
+
env_path = find_dotenv()
|
| 23 |
+
if env_path:
|
| 24 |
+
load_dotenv(env_path)
|
| 25 |
+
|
| 26 |
+
# Initialize Hugging Face authentication with better error handling
|
| 27 |
+
try:
|
| 28 |
+
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN') or os.environ.get('HF_TOKEN')
|
| 29 |
+
if HUGGINGFACE_TOKEN and HUGGINGFACE_TOKEN.startswith('hf_'):
|
| 30 |
login(token=HUGGINGFACE_TOKEN)
|
| 31 |
+
st.sidebar.success("✅ Authenticated with Hugging Face")
|
| 32 |
+
else:
|
| 33 |
+
st.sidebar.warning("⚠️ Using public models (rate limited)")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
st.sidebar.warning(f"⚠️ Using public access: {str(e)}")
|
|
|
|
| 36 |
|
| 37 |
# Configuration dictionary to store app settings
|
| 38 |
app_config = {
|
|
|
|
| 93 |
def save_uploaded_file(uploaded_file):
|
| 94 |
"""Save uploaded file to a temporary file and return the path."""
|
| 95 |
try:
|
| 96 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
tmp_file.write(uploaded_file.getvalue())
|
| 98 |
return tmp_file.name
|
| 99 |
except Exception as e:
|
| 100 |
st.error(f"Error saving file: {str(e)}")
|
| 101 |
return None
|
| 102 |
|
| 103 |
+
def transcribe_audio(file_path, model_name):
|
| 104 |
+
"""Transcribe audio using the specified model."""
|
| 105 |
+
try:
|
| 106 |
+
transcriber = HFTranscriber(model_name=model_name)
|
| 107 |
+
result = transcriber.transcribe_audio(file_path, 16000) # 16kHz sample rate
|
| 108 |
+
return result
|
| 109 |
+
except Exception as e:
|
| 110 |
+
st.error(f"❌ Transcription failed: {str(e)}")
|
| 111 |
+
st.exception(e) # Show full error in debug mode
|
| 112 |
+
return None
|
| 113 |
+
|
| 114 |
def main():
|
|
|
|
|
|
|
| 115 |
st.title("🎵 Audio to Sheet Music Transcriber")
|
| 116 |
st.markdown("### Convert monophonic audio to sheet music")
|
| 117 |
|
| 118 |
+
# Model selection in sidebar
|
| 119 |
+
with st.sidebar:
|
| 120 |
+
st.header("🔧 Settings")
|
| 121 |
+
|
| 122 |
+
# Model selection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
model_options = {
|
| 124 |
"Whisper Small (Recommended)": "openai/whisper-small",
|
| 125 |
"Whisper Base": "openai/whisper-base",
|
| 126 |
+
"Wav2Vec2 Base": "facebook/wav2vec2-base-960h"
|
|
|
|
| 127 |
}
|
| 128 |
|
| 129 |
+
selected_model = st.selectbox(
|
| 130 |
"Select Model",
|
| 131 |
options=list(model_options.keys()),
|
| 132 |
+
index=0,
|
| 133 |
+
help="Choose the transcription model. Whisper models generally provide better accuracy."
|
| 134 |
)
|
| 135 |
+
model_name = model_options[selected_model]
|
| 136 |
|
| 137 |
+
# Main content area
|
| 138 |
+
st.header("🎤 Upload Audio File")
|
| 139 |
+
st.info("ℹ️ Please upload an audio file for transcription (WAV, MP3, or OGG format)")
|
| 140 |
|
| 141 |
+
uploaded_file = st.file_uploader(
|
| 142 |
+
"Choose an audio file",
|
| 143 |
+
type=["wav", "mp3", "ogg"],
|
| 144 |
+
accept_multiple_files=False,
|
| 145 |
+
help="Select an audio file to transcribe (max 30MB)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
+
if uploaded_file is not None:
|
| 149 |
+
with st.spinner("Processing audio..."):
|
| 150 |
+
try:
|
| 151 |
+
# Save the uploaded file temporarily
|
| 152 |
+
temp_file_path = save_uploaded_file(uploaded_file)
|
| 153 |
+
|
| 154 |
+
# Display the audio player
|
| 155 |
+
st.audio(temp_file_path, format=f'audio/{os.path.splitext(uploaded_file.name)[1][1:]}')
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
st.error(f"Error processing uploaded file: {str(e)}")
|
| 159 |
+
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
try:
|
| 161 |
+
os.remove(temp_file_path)
|
| 162 |
+
except:
|
| 163 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
# Transcription Section
|
| 166 |
+
if uploaded_file is not None:
|
| 167 |
+
audio_file = temp_file_path
|
| 168 |
|
| 169 |
# Add model selection
|
| 170 |
model_options = {
|
|
|
|
| 280 |
|
| 281 |
if __name__ == "__main__":
|
| 282 |
# Create necessary directories
|
|
|
|
| 283 |
os.makedirs("outputs", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
+
# Run the app
|
| 286 |
main()
|
| 287 |
+
|
| 288 |
+
# Add footer
|
| 289 |
+
st.markdown("---")
|
| 290 |
+
st.markdown("### About")
|
| 291 |
+
st.markdown("""
|
| 292 |
+
This app uses Hugging Face's Transformers library for speech-to-text transcription.
|
| 293 |
+
Models are loaded on-demand and require an internet connection.
|
| 294 |
+
|
| 295 |
+
**Note:** This is a web-based version that only supports file uploads.
|
| 296 |
+
For local use with microphone support, run the main app.py instead.
|
| 297 |
+
""")
|