|
from typing import List, Iterable |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
def pad_divide_by(in_img: torch.Tensor, d: int) -> (torch.Tensor, Iterable[int]): |
|
h, w = in_img.shape[-2:] |
|
|
|
if h % d > 0: |
|
new_h = h + d - h % d |
|
else: |
|
new_h = h |
|
if w % d > 0: |
|
new_w = w + d - w % d |
|
else: |
|
new_w = w |
|
lh, uh = int((new_h - h) / 2), int(new_h - h) - int((new_h - h) / 2) |
|
lw, uw = int((new_w - w) / 2), int(new_w - w) - int((new_w - w) / 2) |
|
pad_array = (int(lw), int(uw), int(lh), int(uh)) |
|
out = F.pad(in_img, pad_array) |
|
return out, pad_array |
|
|
|
|
|
def unpad(img: torch.Tensor, pad: Iterable[int]) -> torch.Tensor: |
|
if len(img.shape) == 4: |
|
if pad[2] + pad[3] > 0: |
|
img = img[:, :, pad[2]:-pad[3], :] |
|
if pad[0] + pad[1] > 0: |
|
img = img[:, :, :, pad[0]:-pad[1]] |
|
elif len(img.shape) == 3: |
|
if pad[2] + pad[3] > 0: |
|
img = img[:, pad[2]:-pad[3], :] |
|
if pad[0] + pad[1] > 0: |
|
img = img[:, :, pad[0]:-pad[1]] |
|
elif len(img.shape) == 5: |
|
if pad[2] + pad[3] > 0: |
|
img = img[:, :, :, pad[2]:-pad[3], :] |
|
if pad[0] + pad[1] > 0: |
|
img = img[:, :, :, :, pad[0]:-pad[1]] |
|
else: |
|
raise NotImplementedError |
|
return img |
|
|
|
|
|
|
|
def aggregate(prob: torch.Tensor, dim: int) -> torch.Tensor: |
|
with torch.cuda.amp.autocast(enabled=False): |
|
prob = prob.float() |
|
new_prob = torch.cat([torch.prod(1 - prob, dim=dim, keepdim=True), prob], |
|
dim).clamp(1e-7, 1 - 1e-7) |
|
logits = torch.log((new_prob / (1 - new_prob))) |
|
|
|
return logits |
|
|
|
|
|
|
|
def cls_to_one_hot(cls_gt: torch.Tensor, num_objects: int) -> torch.Tensor: |
|
|
|
B, _, H, W = cls_gt.shape |
|
one_hot = torch.zeros(B, num_objects + 1, H, W, device=cls_gt.device).scatter_(1, cls_gt, 1) |
|
return one_hot |