|
import logging |
|
from omegaconf import DictConfig |
|
from typing import List, Dict |
|
import torch |
|
|
|
from matanyone.inference.object_manager import ObjectManager |
|
from matanyone.inference.kv_memory_store import KeyValueMemoryStore |
|
from matanyone.model.matanyone import MatAnyone |
|
from matanyone.model.utils.memory_utils import get_similarity, do_softmax |
|
|
|
log = logging.getLogger() |
|
|
|
|
|
class MemoryManager: |
|
""" |
|
Manages all three memory stores and the transition between working/long-term memory |
|
""" |
|
def __init__(self, cfg: DictConfig, object_manager: ObjectManager): |
|
self.object_manager = object_manager |
|
self.sensory_dim = cfg.model.sensory_dim |
|
self.top_k = cfg.top_k |
|
self.chunk_size = cfg.chunk_size |
|
|
|
self.save_aux = cfg.save_aux |
|
|
|
self.use_long_term = cfg.use_long_term |
|
self.count_long_term_usage = cfg.long_term.count_usage |
|
|
|
|
|
|
|
if self.use_long_term: |
|
self.max_mem_frames = cfg.long_term.max_mem_frames - 1 |
|
self.min_mem_frames = cfg.long_term.min_mem_frames - 1 |
|
self.num_prototypes = cfg.long_term.num_prototypes |
|
self.max_long_tokens = cfg.long_term.max_num_tokens |
|
self.buffer_tokens = cfg.long_term.buffer_tokens |
|
else: |
|
self.max_mem_frames = cfg.max_mem_frames - 1 |
|
|
|
|
|
self.CK = self.CV = None |
|
self.H = self.W = None |
|
|
|
|
|
|
|
self.sensory = {} |
|
|
|
|
|
self.obj_v = {} |
|
|
|
self.work_mem = KeyValueMemoryStore(save_selection=self.use_long_term, |
|
save_usage=self.use_long_term) |
|
if self.use_long_term: |
|
self.long_mem = KeyValueMemoryStore(save_usage=self.count_long_term_usage) |
|
|
|
self.config_stale = True |
|
self.engaged = False |
|
|
|
def update_config(self, cfg: DictConfig) -> None: |
|
self.config_stale = True |
|
self.top_k = cfg['top_k'] |
|
|
|
assert self.use_long_term == cfg.use_long_term, 'cannot update this' |
|
assert self.count_long_term_usage == cfg.long_term.count_usage, 'cannot update this' |
|
|
|
self.use_long_term = cfg.use_long_term |
|
self.count_long_term_usage = cfg.long_term.count_usage |
|
if self.use_long_term: |
|
self.max_mem_frames = cfg.long_term.max_mem_frames - 1 |
|
self.min_mem_frames = cfg.long_term.min_mem_frames - 1 |
|
self.num_prototypes = cfg.long_term.num_prototypes |
|
self.max_long_tokens = cfg.long_term.max_num_tokens |
|
self.buffer_tokens = cfg.long_term.buffer_tokens |
|
else: |
|
self.max_mem_frames = cfg.max_mem_frames - 1 |
|
|
|
def _readout(self, affinity, v, uncert_mask=None) -> torch.Tensor: |
|
|
|
|
|
|
|
if len(v.shape) == 3: |
|
|
|
if uncert_mask is not None: |
|
return v @ affinity * uncert_mask |
|
else: |
|
return v @ affinity |
|
else: |
|
bs, num_objects, C, N = v.shape |
|
v = v.view(bs, num_objects * C, N) |
|
out = v @ affinity |
|
if uncert_mask is not None: |
|
uncert_mask = uncert_mask.flatten(start_dim=2).expand(-1, C, -1) |
|
out = out * uncert_mask |
|
return out.view(bs, num_objects, C, -1) |
|
|
|
def _get_mask_by_ids(self, mask: torch.Tensor, obj_ids: List[int]) -> torch.Tensor: |
|
|
|
return mask[:, [self.object_manager.find_tmp_by_id(obj) - 1 for obj in obj_ids]] |
|
|
|
def _get_sensory_by_ids(self, obj_ids: List[int]) -> torch.Tensor: |
|
return torch.stack([self.sensory[obj] for obj in obj_ids], dim=1) |
|
|
|
def _get_object_mem_by_ids(self, obj_ids: List[int]) -> torch.Tensor: |
|
return torch.stack([self.obj_v[obj] for obj in obj_ids], dim=1) |
|
|
|
def _get_visual_values_by_ids(self, obj_ids: List[int]) -> torch.Tensor: |
|
|
|
value = torch.stack([self.work_mem.value[obj] for obj in obj_ids], dim=1) |
|
if self.use_long_term and obj_ids[0] in self.long_mem.value: |
|
lt_value = torch.stack([self.long_mem.value[obj] for obj in obj_ids], dim=1) |
|
value = torch.cat([lt_value, value], dim=-1) |
|
|
|
return value |
|
|
|
def read_first_frame(self, last_msk_value, pix_feat: torch.Tensor, |
|
last_mask: torch.Tensor, network: MatAnyone, uncert_output=None) -> Dict[int, torch.Tensor]: |
|
""" |
|
Read from all memory stores and returns a single memory readout tensor for each object |
|
|
|
pix_feat: (1/2) x C x H x W |
|
query_key: (1/2) x C^k x H x W |
|
selection: (1/2) x C^k x H x W |
|
last_mask: (1/2) x num_objects x H x W (at stride 16) |
|
return a dict of memory readouts, indexed by object indices. Each readout is C*H*W |
|
""" |
|
h, w = pix_feat.shape[-2:] |
|
bs = pix_feat.shape[0] |
|
assert last_mask.shape[0] == bs |
|
|
|
""" |
|
Compute affinity and perform readout |
|
""" |
|
all_readout_mem = {} |
|
buckets = self.work_mem.buckets |
|
for bucket_id, bucket in buckets.items(): |
|
|
|
if self.chunk_size < 1: |
|
object_chunks = [bucket] |
|
else: |
|
object_chunks = [ |
|
bucket[i:i + self.chunk_size] for i in range(0, len(bucket), self.chunk_size) |
|
] |
|
|
|
for objects in object_chunks: |
|
this_sensory = self._get_sensory_by_ids(objects) |
|
this_last_mask = self._get_mask_by_ids(last_mask, objects) |
|
this_msk_value = self._get_visual_values_by_ids(objects) |
|
pixel_readout = network.pixel_fusion(pix_feat, last_msk_value, this_sensory, |
|
this_last_mask) |
|
this_obj_mem = self._get_object_mem_by_ids(objects).unsqueeze(2) |
|
readout_memory, aux_features = network.readout_query(pixel_readout, this_obj_mem) |
|
for i, obj in enumerate(objects): |
|
all_readout_mem[obj] = readout_memory[:, i] |
|
|
|
if self.save_aux: |
|
aux_output = { |
|
|
|
|
|
'q_logits': aux_features['logits'] if aux_features else None, |
|
|
|
|
|
|
|
} |
|
self.aux = aux_output |
|
|
|
return all_readout_mem |
|
|
|
def read(self, pix_feat: torch.Tensor, query_key: torch.Tensor, selection: torch.Tensor, |
|
last_mask: torch.Tensor, network: MatAnyone, uncert_output=None, last_msk_value=None, ti=None, |
|
last_pix_feat=None, last_pred_mask=None) -> Dict[int, torch.Tensor]: |
|
""" |
|
Read from all memory stores and returns a single memory readout tensor for each object |
|
|
|
pix_feat: (1/2) x C x H x W |
|
query_key: (1/2) x C^k x H x W |
|
selection: (1/2) x C^k x H x W |
|
last_mask: (1/2) x num_objects x H x W (at stride 16) |
|
return a dict of memory readouts, indexed by object indices. Each readout is C*H*W |
|
""" |
|
h, w = pix_feat.shape[-2:] |
|
bs = pix_feat.shape[0] |
|
assert query_key.shape[0] == bs |
|
assert selection.shape[0] == bs |
|
assert last_mask.shape[0] == bs |
|
|
|
uncert_mask = uncert_output["mask"] if uncert_output is not None else None |
|
|
|
query_key = query_key.flatten(start_dim=2) |
|
selection = selection.flatten(start_dim=2) |
|
""" |
|
Compute affinity and perform readout |
|
""" |
|
all_readout_mem = {} |
|
buckets = self.work_mem.buckets |
|
for bucket_id, bucket in buckets.items(): |
|
if self.use_long_term and self.long_mem.engaged(bucket_id): |
|
|
|
long_mem_size = self.long_mem.size(bucket_id) |
|
memory_key = torch.cat([self.long_mem.key[bucket_id], self.work_mem.key[bucket_id]], |
|
-1) |
|
shrinkage = torch.cat( |
|
[self.long_mem.shrinkage[bucket_id], self.work_mem.shrinkage[bucket_id]], -1) |
|
|
|
similarity = get_similarity(memory_key, shrinkage, query_key, selection) |
|
affinity, usage = do_softmax(similarity, |
|
top_k=self.top_k, |
|
inplace=True, |
|
return_usage=True) |
|
""" |
|
Record memory usage for working and long-term memory |
|
""" |
|
|
|
work_usage = usage[:, long_mem_size:] |
|
self.work_mem.update_bucket_usage(bucket_id, work_usage) |
|
|
|
if self.count_long_term_usage: |
|
|
|
long_usage = usage[:, :long_mem_size] |
|
self.long_mem.update_bucket_usage(bucket_id, long_usage) |
|
else: |
|
|
|
memory_key = self.work_mem.key[bucket_id] |
|
shrinkage = self.work_mem.shrinkage[bucket_id] |
|
similarity = get_similarity(memory_key, shrinkage, query_key, selection, uncert_mask=uncert_mask) |
|
|
|
if self.use_long_term: |
|
affinity, usage = do_softmax(similarity, |
|
top_k=self.top_k, |
|
inplace=True, |
|
return_usage=True) |
|
self.work_mem.update_bucket_usage(bucket_id, usage) |
|
else: |
|
affinity = do_softmax(similarity, top_k=self.top_k, inplace=True) |
|
|
|
if self.chunk_size < 1: |
|
object_chunks = [bucket] |
|
else: |
|
object_chunks = [ |
|
bucket[i:i + self.chunk_size] for i in range(0, len(bucket), self.chunk_size) |
|
] |
|
|
|
for objects in object_chunks: |
|
this_sensory = self._get_sensory_by_ids(objects) |
|
this_last_mask = self._get_mask_by_ids(last_mask, objects) |
|
this_msk_value = self._get_visual_values_by_ids(objects) |
|
visual_readout = self._readout(affinity, |
|
this_msk_value, uncert_mask).view(bs, len(objects), self.CV, h, w) |
|
|
|
uncert_output = network.pred_uncertainty(last_pix_feat, pix_feat, last_pred_mask, visual_readout[:,0]-last_msk_value[:,0]) |
|
|
|
if uncert_output is not None: |
|
uncert_prob = uncert_output["prob"].unsqueeze(1) |
|
visual_readout = visual_readout*uncert_prob + last_msk_value*(1-uncert_prob) |
|
|
|
pixel_readout = network.pixel_fusion(pix_feat, visual_readout, this_sensory, |
|
this_last_mask) |
|
this_obj_mem = self._get_object_mem_by_ids(objects).unsqueeze(2) |
|
readout_memory, aux_features = network.readout_query(pixel_readout, this_obj_mem) |
|
for i, obj in enumerate(objects): |
|
all_readout_mem[obj] = readout_memory[:, i] |
|
|
|
if self.save_aux: |
|
aux_output = { |
|
|
|
|
|
'q_logits': aux_features['logits'] if aux_features else None, |
|
|
|
|
|
|
|
} |
|
self.aux = aux_output |
|
|
|
return all_readout_mem |
|
|
|
def add_memory(self, |
|
key: torch.Tensor, |
|
shrinkage: torch.Tensor, |
|
msk_value: torch.Tensor, |
|
obj_value: torch.Tensor, |
|
objects: List[int], |
|
selection: torch.Tensor = None, |
|
*, |
|
as_permanent: bool = False) -> None: |
|
|
|
|
|
|
|
|
|
bs = key.shape[0] |
|
assert shrinkage.shape[0] == bs |
|
assert msk_value.shape[0] == bs |
|
assert obj_value.shape[0] == bs |
|
|
|
self.engaged = True |
|
if self.H is None or self.config_stale: |
|
self.config_stale = False |
|
self.H, self.W = msk_value.shape[-2:] |
|
self.HW = self.H * self.W |
|
|
|
self.max_work_tokens = self.max_mem_frames * self.HW |
|
if self.use_long_term: |
|
self.min_work_tokens = self.min_mem_frames * self.HW |
|
|
|
|
|
|
|
key = key.flatten(start_dim=2) |
|
shrinkage = shrinkage.flatten(start_dim=2) |
|
self.CK = key.shape[1] |
|
|
|
msk_value = msk_value.flatten(start_dim=3) |
|
self.CV = msk_value.shape[2] |
|
|
|
if selection is not None: |
|
|
|
selection = selection.flatten(start_dim=2) |
|
|
|
|
|
for obj_id, obj in enumerate(objects): |
|
if obj in self.obj_v: |
|
"""streaming average |
|
each self.obj_v[obj] is (1/2)*num_summaries*(embed_dim+1) |
|
first embed_dim keeps track of the sum of embeddings |
|
the last dim keeps the total count |
|
averaging in done inside the object transformer |
|
|
|
incoming obj_value is (1/2)*num_objects*num_summaries*(embed_dim+1) |
|
self.obj_v[obj] = torch.cat([self.obj_v[obj], obj_value[:, obj_id]], dim=0) |
|
""" |
|
last_acc = self.obj_v[obj][:, :, -1] |
|
new_acc = last_acc + obj_value[:, obj_id, :, -1] |
|
|
|
self.obj_v[obj][:, :, :-1] = (self.obj_v[obj][:, :, :-1] + |
|
obj_value[:, obj_id, :, :-1]) |
|
self.obj_v[obj][:, :, -1] = new_acc |
|
else: |
|
self.obj_v[obj] = obj_value[:, obj_id] |
|
|
|
|
|
msk_values = {obj: msk_value[:, obj_id] for obj_id, obj in enumerate(objects)} |
|
self.work_mem.add(key, |
|
msk_values, |
|
shrinkage, |
|
selection=selection, |
|
as_permanent=as_permanent) |
|
|
|
for bucket_id in self.work_mem.buckets.keys(): |
|
|
|
if self.use_long_term: |
|
|
|
if self.work_mem.non_perm_size(bucket_id) >= self.max_work_tokens: |
|
|
|
if self.long_mem.non_perm_size(bucket_id) >= (self.max_long_tokens - |
|
self.num_prototypes): |
|
self.long_mem.remove_obsolete_features( |
|
bucket_id, |
|
self.max_long_tokens - self.num_prototypes - self.buffer_tokens) |
|
|
|
self.compress_features(bucket_id) |
|
else: |
|
|
|
self.work_mem.remove_old_memory(bucket_id, self.max_work_tokens) |
|
|
|
def purge_except(self, obj_keep_idx: List[int]) -> None: |
|
|
|
self.work_mem.purge_except(obj_keep_idx) |
|
if self.use_long_term and self.long_mem.engaged(): |
|
self.long_mem.purge_except(obj_keep_idx) |
|
self.sensory = {k: v for k, v in self.sensory.items() if k in obj_keep_idx} |
|
|
|
if not self.work_mem.engaged(): |
|
|
|
self.engaged = False |
|
|
|
def compress_features(self, bucket_id: int) -> None: |
|
|
|
|
|
prototype_key, prototype_value, prototype_shrinkage = self.consolidation( |
|
*self.work_mem.get_all_sliced(bucket_id, 0, -self.min_work_tokens)) |
|
|
|
|
|
self.work_mem.sieve_by_range(bucket_id, |
|
0, |
|
-self.min_work_tokens, |
|
min_size=self.min_work_tokens) |
|
|
|
|
|
self.long_mem.add(prototype_key, |
|
prototype_value, |
|
prototype_shrinkage, |
|
selection=None, |
|
supposed_bucket_id=bucket_id) |
|
|
|
def consolidation(self, candidate_key: torch.Tensor, candidate_shrinkage: torch.Tensor, |
|
candidate_selection: torch.Tensor, candidate_value: Dict[int, torch.Tensor], |
|
usage: torch.Tensor) -> (torch.Tensor, Dict[int, torch.Tensor], torch.Tensor): |
|
|
|
bs = candidate_key.shape[0] |
|
assert bs in [1, 2] |
|
|
|
prototype_key = [] |
|
prototype_selection = [] |
|
for bi in range(bs): |
|
_, max_usage_indices = torch.topk(usage[bi], k=self.num_prototypes, dim=-1, sorted=True) |
|
prototype_indices = max_usage_indices.flatten() |
|
prototype_key.append(candidate_key[bi, :, prototype_indices]) |
|
prototype_selection.append(candidate_selection[bi, :, prototype_indices]) |
|
prototype_key = torch.stack(prototype_key, dim=0) |
|
prototype_selection = torch.stack(prototype_selection, dim=0) |
|
""" |
|
Potentiation step |
|
""" |
|
similarity = get_similarity(candidate_key, candidate_shrinkage, prototype_key, |
|
prototype_selection) |
|
affinity = do_softmax(similarity) |
|
|
|
|
|
prototype_value = {k: self._readout(affinity, v) for k, v in candidate_value.items()} |
|
|
|
|
|
prototype_shrinkage = self._readout(affinity, candidate_shrinkage) |
|
|
|
return prototype_key, prototype_value, prototype_shrinkage |
|
|
|
def initialize_sensory_if_needed(self, sample_key: torch.Tensor, ids: List[int]): |
|
for obj in ids: |
|
if obj not in self.sensory: |
|
|
|
bs, _, h, w = sample_key.shape |
|
self.sensory[obj] = torch.zeros((bs, self.sensory_dim, h, w), |
|
device=sample_key.device) |
|
|
|
def update_sensory(self, sensory: torch.Tensor, ids: List[int]): |
|
|
|
for obj_id, obj in enumerate(ids): |
|
self.sensory[obj] = sensory[:, obj_id] |
|
|
|
def get_sensory(self, ids: List[int]): |
|
|
|
return self._get_sensory_by_ids(ids) |
|
|
|
def clear_non_permanent_memory(self): |
|
self.work_mem.clear_non_permanent_memory() |
|
if self.use_long_term: |
|
self.long_mem.clear_non_permanent_memory() |
|
|
|
def clear_sensory_memory(self): |
|
self.sensory = {} |
|
|
|
def clear_work_mem(self): |
|
self.work_mem = KeyValueMemoryStore(save_selection=self.use_long_term, |
|
save_usage=self.use_long_term) |
|
|
|
def clear_obj_mem(self): |
|
self.obj_v = {} |
|
|