|
import tqdm |
|
import torch |
|
from torchvision.transforms.functional import to_tensor |
|
import numpy as np |
|
import random |
|
import cv2 |
|
|
|
def gen_dilate(alpha, min_kernel_size, max_kernel_size): |
|
kernel_size = random.randint(min_kernel_size, max_kernel_size) |
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size)) |
|
fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32)) |
|
dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255 |
|
return dilate.astype(np.float32) |
|
|
|
def gen_erosion(alpha, min_kernel_size, max_kernel_size): |
|
kernel_size = random.randint(min_kernel_size, max_kernel_size) |
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size)) |
|
fg = np.array(np.equal(alpha, 255).astype(np.float32)) |
|
erode = cv2.erode(fg, kernel, iterations=1)*255 |
|
return erode.astype(np.float32) |
|
|
|
@torch.inference_mode() |
|
@torch.cuda.amp.autocast() |
|
def matanyone(processor, frames_np, mask, r_erode=0, r_dilate=0, n_warmup=10): |
|
""" |
|
Args: |
|
frames_np: [(H,W,C)]*n, uint8 |
|
mask: (H,W), uint8 |
|
Outputs: |
|
com: [(H,W,C)]*n, uint8 |
|
pha: [(H,W,C)]*n, uint8 |
|
""" |
|
|
|
|
|
bgr = (np.array([120, 255, 155], dtype=np.float32)/255).reshape((1, 1, 3)) |
|
objects = [1] |
|
|
|
|
|
if r_dilate > 0: |
|
mask = gen_dilate(mask, r_dilate, r_dilate) |
|
if r_erode > 0: |
|
mask = gen_erosion(mask, r_erode, r_erode) |
|
|
|
mask = torch.from_numpy(mask).cuda() |
|
|
|
frames_np = [frames_np[0]]* n_warmup + frames_np |
|
|
|
frames = [] |
|
phas = [] |
|
for ti, frame_single in tqdm.tqdm(enumerate(frames_np)): |
|
image = to_tensor(frame_single).cuda().float() |
|
|
|
if ti == 0: |
|
output_prob = processor.step(image, mask, objects=objects) |
|
output_prob = processor.step(image, first_frame_pred=True) |
|
else: |
|
if ti <= n_warmup: |
|
output_prob = processor.step(image, first_frame_pred=True) |
|
else: |
|
output_prob = processor.step(image) |
|
|
|
|
|
mask = processor.output_prob_to_mask(output_prob) |
|
|
|
pha = mask.unsqueeze(2).cpu().numpy() |
|
com_np = frame_single / 255. * pha + bgr * (1 - pha) |
|
|
|
|
|
if ti > (n_warmup-1): |
|
frames.append((com_np*255).astype(np.uint8)) |
|
phas.append((pha*255).astype(np.uint8)) |
|
|
|
return frames, phas |