Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,85 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
import torch
|
4 |
import duckdb
|
5 |
-
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
df = pd.read_csv('synthetic_profit.csv')
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# One-line schema for prompts
|
13 |
-
schema = ", ".join(df.columns)
|
14 |
-
|
15 |
-
# Load TAPEX for SQL generation
|
16 |
-
MODEL_ID = "microsoft/tapex-base-finetuned-wikisql"
|
17 |
-
device = 0 if torch.cuda.is_available() else -1
|
18 |
-
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
20 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
21 |
-
|
22 |
-
sql_gen = pipeline(
|
23 |
-
"text2text-generation",
|
24 |
-
model=model,
|
25 |
-
tokenizer=tokenizer,
|
26 |
-
framework="pt",
|
27 |
-
device=device,
|
28 |
-
max_length=128,
|
29 |
-
)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
-
sql =
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
-
|
43 |
except Exception as e:
|
44 |
-
# Use a normal f-string with explicit \n for newlines
|
45 |
return (
|
46 |
-
f"β **SQL
|
47 |
f"```\n{e}\n```\n\n"
|
48 |
-
f"**Generated SQL**\n"
|
49 |
-
f"```sql\n{sql}\n```"
|
50 |
-
)
|
51 |
-
|
52 |
-
# 3) Format successful result
|
53 |
-
if df_out.empty:
|
54 |
-
return (
|
55 |
-
"No rows returned.\n\n"
|
56 |
f"**Generated SQL**\n```sql\n{sql}\n```"
|
57 |
)
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
|
|
4 |
import duckdb
|
5 |
+
import openai
|
6 |
|
7 |
+
# βββ 1) Set your OpenAI key via the SECRET: OPENAI_API_KEY βββββββββββββββββββ
|
8 |
+
openai.api_key = os.getenv("
|
9 |
+
|
10 |
+

|
11 |
+
|
12 |
+
")
|
13 |
+
|
14 |
+
# βββ 2) Load your synthetic data into DuckDB βββββββββββββββββββββββββββββββββ
|
15 |
df = pd.read_csv('synthetic_profit.csv')
|
16 |
+
conn = duckdb.connect(':memory:')
|
17 |
+
conn.register('sap', df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# βββ 3) One-line schema description for prompting βββββββββββββββββββββββββββββ
|
20 |
+
schema = ", ".join(df.columns)
|
21 |
+
# e.g. "Region,Product,FiscalYear,FiscalQuarter,Revenue,Profit,ProfitMargin"
|
22 |
+
|
23 |
+
# βββ 4) Function to call OpenAI and generate SQL ββββββββββββββββββββββββββββββ
|
24 |
+
def generate_sql(question: str) -> str:
|
25 |
+
system = (
|
26 |
+
f"You are an expert SQL generator for a DuckDB table named `sap` "
|
27 |
+
f"with columns: {schema}. "
|
28 |
+
"Generate a valid SQL query that returns exactly what the user is asking. "
|
29 |
+
"Only return the SQL query, without any explanation."
|
30 |
+
)
|
31 |
+
messages = [
|
32 |
+
{"role": "system", "content": system},
|
33 |
+
{"role": "user", "content": question}
|
34 |
+
]
|
35 |
+
resp = openai.ChatCompletion.create(
|
36 |
+
model="gpt-3.5-turbo",
|
37 |
+
messages=messages,
|
38 |
+
temperature=0.0,
|
39 |
+
max_tokens=150,
|
40 |
)
|
41 |
+
sql = resp.choices[0].message.content.strip()
|
42 |
+
# Strip triple-backticks if present
|
43 |
+
if sql.startswith("```") and "```" in sql[3:]:
|
44 |
+
sql = "\n".join(sql.splitlines()[1:-1])
|
45 |
+
return sql
|
46 |
|
47 |
+
# βββ 5) Core QA function: NL β SQL β execute β format result βββββββββββββββββ
|
48 |
+
def answer_profitability(question: str) -> str:
|
49 |
+
# 5a) Generate SQL
|
50 |
+
sql = generate_sql(question)
|
51 |
+
|
52 |
+
# 5b) Try to run it
|
53 |
try:
|
54 |
+
out_df = conn.execute(sql).df()
|
55 |
except Exception as e:
|
|
|
56 |
return (
|
57 |
+
f"β **Error executing SQL**\n\n"
|
58 |
f"```\n{e}\n```\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
f"**Generated SQL**\n```sql\n{sql}\n```"
|
60 |
)
|
61 |
|
62 |
+
# 5c) Format the successful result
|
63 |
+
if out_df.empty:
|
64 |
+
return f"No rows returned.\n\n**SQL**\n```sql\n{sql}\n```"
|
65 |
+
# Singleβcell result β scalar
|
66 |
+
if out_df.shape == (1,1):
|
67 |
+
return str(out_df.iat[0,0])
|
68 |
+
# Otherwise β markdown table
|
69 |
+
return out_df.to_markdown(index=False)
|
70 |
+
|
71 |
+
# βββ 6) Gradio UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=answer_profitability,
|
74 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitabilityβ¦"),
|
75 |
+
outputs=gr.Markdown(),
|
76 |
+
title="SAP Profitability Q&A (OpenAI β SQL β DuckDB)",
|
77 |
+
description=(
|
78 |
+
"Uses OpenAIβs GPT-3.5-Turbo to translate your question into SQL, "
|
79 |
+
"executes it on the `sap` table in DuckDB, and returns the result."
|
80 |
+
),
|
81 |
+
allow_flagging="never",
|
82 |
+
)
|
83 |
|
84 |
+
if __name__ == "__main__":
|
85 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|