Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ import gradio as gr
|
|
3 |
import pandas as pd
|
4 |
from transformers import pipeline
|
5 |
|
6 |
-
#
|
7 |
df = pd.read_csv("synthetic_profit.csv")
|
8 |
|
9 |
-
#
|
10 |
tapas = pipeline(
|
11 |
"table-question-answering",
|
12 |
model="google/tapas-base-finetuned-wtq",
|
@@ -15,82 +15,66 @@ tapas = pipeline(
|
|
15 |
)
|
16 |
table = df.astype(str).to_dict(orient="records")
|
17 |
|
18 |
-
#
|
19 |
-
OPERATIONS = {
|
20 |
-
"
|
21 |
-
"sum": "sum",
|
22 |
-
"average": "mean",
|
23 |
-
"mean": "mean"
|
24 |
-
}
|
25 |
-
COLUMNS = {
|
26 |
-
"revenue": "Revenue",
|
27 |
-
"cost": "Cost",
|
28 |
-
"profit": "Profit",
|
29 |
-
"margin": "ProfitMargin",
|
30 |
-
"profit margin":"ProfitMargin"
|
31 |
-
}
|
32 |
|
33 |
def parse_and_compute(question: str):
|
34 |
q = question.lower()
|
35 |
-
|
|
|
36 |
op = next((OPERATIONS[k] for k in OPERATIONS if k in q), None)
|
37 |
# 2) detect column
|
38 |
-
col = next((COLUMNS[k]
|
39 |
-
# 3) detect product
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
qtr = next((fq for fq in df["FiscalQuarter"].unique() if fq.lower() in q), None)
|
49 |
|
|
|
50 |
if None in (op, col, prod, region, year, qtr):
|
51 |
-
return None
|
52 |
|
53 |
-
# filter
|
54 |
sub = df[
|
55 |
(df["Product"] == prod) &
|
56 |
(df["Region"] == region) &
|
57 |
(df["FiscalYear"] == year) &
|
58 |
-
(df["FiscalQuarter"]
|
59 |
]
|
60 |
-
|
61 |
-
# compute
|
62 |
try:
|
63 |
val = getattr(sub[col], op)()
|
64 |
-
except
|
65 |
return None
|
66 |
|
67 |
return f"{op.capitalize()} {col} for {prod} in {region}, {qtr} {year}: {val:.2f}"
|
68 |
|
69 |
-
# 4) Main answer fn
|
70 |
def answer(question: str) -> str:
|
71 |
-
|
72 |
-
if
|
73 |
-
return
|
74 |
|
75 |
-
# fallback
|
76 |
try:
|
77 |
-
|
78 |
-
return
|
79 |
except Exception as e:
|
80 |
return f"❌ Error: {e}"
|
81 |
|
82 |
-
#
|
83 |
iface = gr.Interface(
|
84 |
fn=answer,
|
85 |
inputs=gr.Textbox(lines=2, placeholder="e.g. What is the total revenue for Product A in EMEA in Q1 2024?"),
|
86 |
outputs=gr.Textbox(lines=3),
|
87 |
title="SAP Profitability Q&A",
|
88 |
-
description=
|
89 |
-
"Supports any basic “total”/“average” question by parsing and computing via Pandas. \n"
|
90 |
-
"Falls back to TAPAS for anything else."
|
91 |
-
),
|
92 |
allow_flagging="never",
|
93 |
)
|
94 |
|
95 |
-
if __name__
|
96 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
3 |
import pandas as pd
|
4 |
from transformers import pipeline
|
5 |
|
6 |
+
# Load data
|
7 |
df = pd.read_csv("synthetic_profit.csv")
|
8 |
|
9 |
+
# Prepare TAPAS fallback
|
10 |
tapas = pipeline(
|
11 |
"table-question-answering",
|
12 |
model="google/tapas-base-finetuned-wtq",
|
|
|
15 |
)
|
16 |
table = df.astype(str).to_dict(orient="records")
|
17 |
|
18 |
+
# Helpers
|
19 |
+
OPERATIONS = {"total": "sum", "sum": "sum", "average": "mean", "mean": "mean"}
|
20 |
+
COLUMNS = {"revenue": "Revenue", "cost": "Cost", "profit": "Profit", "margin":"ProfitMargin","profit margin":"ProfitMargin"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def parse_and_compute(question: str):
|
23 |
q = question.lower()
|
24 |
+
|
25 |
+
# 1) detect operation
|
26 |
op = next((OPERATIONS[k] for k in OPERATIONS if k in q), None)
|
27 |
# 2) detect column
|
28 |
+
col = next((COLUMNS[k] for k in COLUMNS if k in q), None)
|
29 |
+
# 3) detect product by scanning your actual values
|
30 |
+
prod = next((p for p in df["Product"].unique() if p.lower() in q), None)
|
31 |
+
# 4) region
|
32 |
+
region = next((r for r in df["Region"].unique() if r.lower() in q), None)
|
33 |
+
# 5) year
|
34 |
+
yr_match = re.search(r"\b(20\d{2})\b", q)
|
35 |
+
year = int(yr_match.group(1)) if yr_match else None
|
36 |
+
# 6) quarter
|
37 |
+
qtr = next((x for x in df["FiscalQuarter"].unique() if x.lower() in q), None)
|
|
|
38 |
|
39 |
+
# if any piece missing, we fallback
|
40 |
if None in (op, col, prod, region, year, qtr):
|
41 |
+
return None
|
42 |
|
43 |
+
# filter & compute
|
44 |
sub = df[
|
45 |
(df["Product"] == prod) &
|
46 |
(df["Region"] == region) &
|
47 |
(df["FiscalYear"] == year) &
|
48 |
+
(df["FiscalQuarter"]== qtr)
|
49 |
]
|
|
|
|
|
50 |
try:
|
51 |
val = getattr(sub[col], op)()
|
52 |
+
except:
|
53 |
return None
|
54 |
|
55 |
return f"{op.capitalize()} {col} for {prod} in {region}, {qtr} {year}: {val:.2f}"
|
56 |
|
|
|
57 |
def answer(question: str) -> str:
|
58 |
+
out = parse_and_compute(question)
|
59 |
+
if out is not None:
|
60 |
+
return out
|
61 |
|
62 |
+
# fallback
|
63 |
try:
|
64 |
+
res = tapas(table=table, query=question)
|
65 |
+
return res.get("answer", "No answer found.")
|
66 |
except Exception as e:
|
67 |
return f"❌ Error: {e}"
|
68 |
|
69 |
+
# Gradio...
|
70 |
iface = gr.Interface(
|
71 |
fn=answer,
|
72 |
inputs=gr.Textbox(lines=2, placeholder="e.g. What is the total revenue for Product A in EMEA in Q1 2024?"),
|
73 |
outputs=gr.Textbox(lines=3),
|
74 |
title="SAP Profitability Q&A",
|
75 |
+
description="Basic total/average queries via Pandas+fallback to TAPAS",
|
|
|
|
|
|
|
76 |
allow_flagging="never",
|
77 |
)
|
78 |
|
79 |
+
if __name__=="__main__":
|
80 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|