Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
import duckdb
|
5 |
import openai
|
6 |
|
7 |
-
# 1)
|
8 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
9 |
|
10 |
# 2) Load your synthetic data into DuckDB
|
@@ -13,17 +13,17 @@ conn = duckdb.connect(':memory:')
|
|
13 |
conn.register('sap', df)
|
14 |
|
15 |
# 3) Build a one-line schema description for prompts
|
16 |
-
schema = ", ".join(df.columns)
|
17 |
|
18 |
-
# 4) SQL
|
19 |
def generate_sql(question: str) -> str:
|
20 |
-
|
21 |
f"You are an expert SQL generator for a DuckDB table named `sap` "
|
22 |
f"with columns: {schema}. "
|
23 |
-
"Translate the user
|
24 |
)
|
25 |
messages = [
|
26 |
-
{"role": "system", "content":
|
27 |
{"role": "user", "content": question},
|
28 |
]
|
29 |
resp = openai.ChatCompletion.create(
|
@@ -33,42 +33,41 @@ def generate_sql(question: str) -> str:
|
|
33 |
max_tokens=150,
|
34 |
)
|
35 |
sql = resp.choices[0].message.content.strip()
|
36 |
-
# strip
|
37 |
if sql.startswith("```") and sql.endswith("```"):
|
38 |
sql = "\n".join(sql.splitlines()[1:-1])
|
39 |
return sql
|
40 |
|
41 |
-
# 5) Core
|
42 |
def answer_profitability(question: str) -> str:
|
43 |
-
# a)
|
44 |
sql = generate_sql(question)
|
45 |
# b) try to run it
|
46 |
try:
|
47 |
result_df = conn.execute(sql).df()
|
48 |
except Exception as e:
|
49 |
return (
|
50 |
-
f"❌
|
51 |
-
f"
|
52 |
-
f"**Generated SQL**\n```sql\n{sql}\n```"
|
53 |
)
|
54 |
# c) format the result
|
55 |
if result_df.empty:
|
56 |
-
return f"No rows returned.\n\n
|
57 |
-
# single-cell →
|
58 |
if result_df.shape == (1,1):
|
59 |
return str(result_df.iat[0,0])
|
60 |
-
#
|
61 |
return result_df.to_markdown(index=False)
|
62 |
|
63 |
-
# 6) Gradio
|
64 |
iface = gr.Interface(
|
65 |
fn=answer_profitability,
|
66 |
-
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…"),
|
67 |
-
outputs=gr.
|
68 |
title="SAP Profitability Q&A (OpenAI → SQL → DuckDB)",
|
69 |
description=(
|
70 |
"Uses OpenAI’s GPT-3.5-Turbo to translate your question into SQL, "
|
71 |
-
"executes it
|
72 |
),
|
73 |
allow_flagging="never",
|
74 |
)
|
|
|
4 |
import duckdb
|
5 |
import openai
|
6 |
|
7 |
+
# 1) Load your OpenAI key from the Space’s Secrets
|
8 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
9 |
|
10 |
# 2) Load your synthetic data into DuckDB
|
|
|
13 |
conn.register('sap', df)
|
14 |
|
15 |
# 3) Build a one-line schema description for prompts
|
16 |
+
schema = ", ".join(df.columns)
|
17 |
|
18 |
+
# 4) Function to generate SQL via OpenAI
|
19 |
def generate_sql(question: str) -> str:
|
20 |
+
system_prompt = (
|
21 |
f"You are an expert SQL generator for a DuckDB table named `sap` "
|
22 |
f"with columns: {schema}. "
|
23 |
+
"Translate the user's question into a valid SQL query and return ONLY the SQL."
|
24 |
)
|
25 |
messages = [
|
26 |
+
{"role": "system", "content": system_prompt},
|
27 |
{"role": "user", "content": question},
|
28 |
]
|
29 |
resp = openai.ChatCompletion.create(
|
|
|
33 |
max_tokens=150,
|
34 |
)
|
35 |
sql = resp.choices[0].message.content.strip()
|
36 |
+
# strip ``` if user or model wrapped it
|
37 |
if sql.startswith("```") and sql.endswith("```"):
|
38 |
sql = "\n".join(sql.splitlines()[1:-1])
|
39 |
return sql
|
40 |
|
41 |
+
# 5) Core Q&A function: NL → SQL → execute → format
|
42 |
def answer_profitability(question: str) -> str:
|
43 |
+
# a) turn the question into SQL
|
44 |
sql = generate_sql(question)
|
45 |
# b) try to run it
|
46 |
try:
|
47 |
result_df = conn.execute(sql).df()
|
48 |
except Exception as e:
|
49 |
return (
|
50 |
+
f"❌ Error executing SQL:\n{e}\n\n"
|
51 |
+
f"Generated SQL was:\n```sql\n{sql}\n```"
|
|
|
52 |
)
|
53 |
# c) format the result
|
54 |
if result_df.empty:
|
55 |
+
return f"No rows returned.\n\n```sql\n{sql}\n```"
|
56 |
+
# single-cell → scalar
|
57 |
if result_df.shape == (1,1):
|
58 |
return str(result_df.iat[0,0])
|
59 |
+
# multi-cell → pretty table
|
60 |
return result_df.to_markdown(index=False)
|
61 |
|
62 |
+
# 6) Gradio interface with explicit outputs
|
63 |
iface = gr.Interface(
|
64 |
fn=answer_profitability,
|
65 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…", label="Question"),
|
66 |
+
outputs=gr.Textbox(lines=8, placeholder="Answer will appear here", label="Answer"),
|
67 |
title="SAP Profitability Q&A (OpenAI → SQL → DuckDB)",
|
68 |
description=(
|
69 |
"Uses OpenAI’s GPT-3.5-Turbo to translate your question into SQL, "
|
70 |
+
"executes it against the `sap` table in DuckDB, and returns the result."
|
71 |
),
|
72 |
allow_flagging="never",
|
73 |
)
|