Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import pandas as pd | |
import duckdb | |
import openai | |
# 1) Load your OpenAI key from the Space’s Secrets | |
OPENAI_KEY = os.getenv("OPENAI_API_KEY") | |
if not OPENAI_KEY: | |
raise RuntimeError("Missing OPENAI_API_KEY secret in your Space settings") | |
openai.api_key = OPENAI_KEY | |
# 2) Load your synthetic data into DuckDB | |
df = pd.read_csv('synthetic_profit.csv') | |
conn = duckdb.connect(':memory:') | |
conn.register('sap', df) | |
# 3) Build a one-line schema description for prompts | |
schema = ", ".join(df.columns) | |
# 4) Function to generate SQL via OpenAI | |
def generate_sql(question: str) -> str: | |
system_prompt = ( | |
f"You are an expert SQL generator for a DuckDB table named `sap` " | |
f"with columns: {schema}. " | |
"Translate the user's question into a valid SQL query and return ONLY the SQL." | |
) | |
try: | |
resp = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": question}, | |
], | |
temperature=0.0, | |
max_tokens=150, | |
) | |
except Exception as e: | |
# Catch network/auth errors | |
raise RuntimeError(f"OpenAI API error: {e}") | |
sql = resp.choices[0].message.content.strip() | |
# strip triple-backticks if present | |
if sql.startswith("```") and sql.endswith("```"): | |
sql = "\n".join(sql.splitlines()[1:-1]) | |
return sql | |
# 5) Core Q&A function: NL → SQL → execute → format | |
def answer_profitability(question: str) -> str: | |
# a) turn the question into SQL | |
try: | |
sql = generate_sql(question) | |
except Exception as e: | |
return f"❌ **OpenAI Error**\n{e}" | |
# b) try to run it | |
try: | |
result_df = conn.execute(sql).df() | |
except Exception as e: | |
return ( | |
f"❌ **SQL Execution Error**\n{e}\n\n" | |
f"**Generated SQL**\n```sql\n{sql}\n```" | |
) | |
# c) format the result | |
if result_df.empty: | |
return f"No rows returned.\n\n```sql\n{sql}\n```" | |
# single-cell → scalar | |
if result_df.shape == (1,1): | |
return str(result_df.iat[0,0]) | |
# multi-cell → markdown table | |
return result_df.to_markdown(index=False) | |
# 6) Gradio interface with explicit inputs & outputs | |
iface = gr.Interface( | |
fn=answer_profitability, | |
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…", label="Question"), | |
outputs=gr.Textbox(lines=8, placeholder="Answer will appear here", label="Answer"), | |
title="SAP Profitability Q&A (OpenAI → SQL → DuckDB)", | |
description=( | |
"Uses OpenAI’s GPT-3.5-Turbo to translate your question into SQL, " | |
"executes it against the `sap` table in DuckDB, and returns the result." | |
), | |
allow_flagging="never", | |
) | |
if __name__ == "__main__": | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |