talk_to_data / app.py
PD03's picture
Update app.py
1c34919 verified
raw
history blame
1.86 kB
import gradio as gr
import pandas as pd
from transformers import pipeline
# 1) Load your data
df = pd.read_csv("synthetic_profit.csv")
table = df.astype(str).to_dict(orient="records")
# 2) TAPEX table‐QA pipeline
qa = pipeline(
"table-question-answering",
model="microsoft/tapex-base-finetuned-wtq",
tokenizer="microsoft/tapex-base-finetuned-wtq",
device=-1
)
# 3) Few‐shot examples
EXAMPLE_PROMPT = """
Example 1:
Q: What is the total revenue for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then sum Revenue → 3075162.49
Example 2:
Q: What is the total cost for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then sum Cost → 2894321.75
Example 3:
Q: What is the total margin for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then sum ProfitMargin → 0.18
"""
def answer_question(question: str) -> str:
full_query = EXAMPLE_PROMPT + f"\nQ: {question}\nA:"
try:
result = qa(table=table, query=full_query)
return result.get("answer", "No answer found.")
except Exception as e:
# Return the actual exception message so you can debug
return f"❌ Pipeline error:\n{e}"
# 4) Gradio UI
iface = gr.Interface(
fn=answer_question,
inputs=gr.Textbox(lines=2, placeholder="Ask a basic question…", label="Your question"),
outputs=gr.Textbox(lines=6, label="Answer"),
title="SAP Profitability Q&A",
description=(
"Ask simple revenue/cost/margin questions on the synthetic SAP data. "
"Powered by microsoft/tapex-base-finetuned-wtq with three few‐shot examples."
),
allow_flagging="never",
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)