Spaces:
Sleeping
Sleeping
File size: 1,200 Bytes
a5ece8b 0f5aca7 8353d84 887b999 daedd19 a5ece8b daedd19 0f5aca7 daedd19 887b999 daedd19 0f5aca7 daedd19 6a97111 0f5aca7 67fc297 0f5aca7 67fc297 0f5aca7 887b999 0f5aca7 887b999 0f5aca7 6a97111 0f5aca7 887b999 a5ece8b 8353d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import pandas as pd
import gradio as gr
from transformers import pipeline
from langchain_community.llms import HuggingFacePipeline
from langchain_experimental.agents import create_pandas_dataframe_agent
# Load data
df = pd.read_csv("synthetic_profit.csv")
# Set up lightweight Hugging Face pipeline (Flan-T5 Base)
hf_pipeline = pipeline(
task="text2text-generation",
model="google/flan-t5-base",
device=-1 # CPU
)
# LangChain agent setup (with explicit security opt-in)
llm = HuggingFacePipeline(pipeline=hf_pipeline)
agent = create_pandas_dataframe_agent(llm, df, verbose=True, allow_dangerous_code=True)
def answer(query: str) -> str:
try:
response = agent.run(query)
return f"π {response}"
except Exception as e:
return f"β Error: {str(e)}"
# Gradio interface
demo = gr.Interface(
fn=answer,
inputs=gr.Textbox(lines=2, placeholder="E.g., 'Total revenue for Product B in EMEA', 'List products with negative profit.'"),
outputs="text",
title="π’ SAP Profitability Data Chat (Flan-T5 + Pandas)",
description="Ask questions about synthetic SAP profitability data. Powered by Flan-T5-base via Hugging Face."
)
demo.launch()
|