File size: 2,329 Bytes
feb9721 c7c7506 c492331 feb9721 c492331 feb9721 c492331 feb9721 c492331 feb9721 c492331 c7c7506 c492331 c7c7506 c492331 c7c7506 c492331 c7c7506 c492331 c7c7506 c492331 c7c7506 feb9721 c492331 feb9721 c492331 feb9721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import av
import cv2
import time
import mediapipe as mp
import numpy as np
import pandas as pd
from mediapipe_functions import *
from utils import *
import tensorflow as tf
# st.title("Webcamera")
# st.write("Steps to use: \n1. Click on Start button.\n2. To stop the video when done, press Stop. \n\n The output will be displayed in about 40 secs.")
class VideoProcessor:
def __init__(self) -> None:
self.threshold1 = 100
self.threshold2 = 200
self.my_list = []
def recv(self, frame):
img = frame.to_ndarray(format="bgr24")
self.my_list.append(img)
return av.VideoFrame.from_ndarray(img, format="bgr24")
# Create the video processor instance
video_processor = VideoProcessor()
ctx = webrtc_streamer(key="sample", video_processor_factory=lambda: video_processor)
# time.sleep(10)
# st.write(len(ctx.video_processor.my_list))
# # Access the frames list after the webrtc_streamer function has finished running
# frames_list = ctx.video_processor.my_list
# # # Display the last frame
# # if frames_list:
# # st.image(frames_list[-1], channels="BGR")
# st.write("Running...")
# # Continuing with the code for inference pipeline
# final_landmarks = extract_landmarks(frames_list)
# df1 = pd.DataFrame(final_landmarks,columns=['x','y','z'])
# ROWS_PER_FRAME = 543
# # Loading data
# st.write(len(frames_list))
# test_df = load_relevant_data_subset(df1, ROWS_PER_FRAME=ROWS_PER_FRAME)
# test_df = tf.convert_to_tensor(test_df)
# # Inference
# interpreter = tf.lite.Interpreter("models/model.tflite")
# prediction_fn = interpreter.get_signature_runner("serving_default")
# output = prediction_fn(inputs=test_df)
# sign = np.argmax(output["outputs"])
# sign_json=pd.read_json("sign_to_prediction_index_map.json",typ='series')
# sign_df=pd.DataFrame(sign_json)
# sign_df.iloc[sign]
# top_indices = np.argsort(output['outputs'])[::-1][:5]
# top_values = output['outputs'][top_indices]
# output_df = sign_df.iloc[top_indices]
# output_df['Value'] = top_values
# output_df.rename(columns = {0:'Index'}, inplace = True)
# st.write(output_df)
import streamlit as st
import time
# start = time.time()
# while(time.)
# picture = st.camera_input("Take a picture")
# if picture:
# st.image(picture) |