kig_test / ki_gen /data_retriever.py
adrienbrdne's picture
Update ki_gen/data_retriever.py
dbe6919 verified
#!/usr/bin/env python
# coding: utf-8
import re
import time
from random import shuffle, sample
from langgraph.checkpoint.sqlite import SqliteSaver
# Remove ChatGroq import
# from langchain_groq import ChatGroq
# Add ChatGoogleGenerativeAI import
from langchain_google_genai import ChatGoogleGenerativeAI
import os # Add os import
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from langchain_community.graphs import Neo4jGraph
from langchain_community.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import Field
from pydantic import BaseModel
from langgraph.graph import StateGraph
from llmlingua import PromptCompressor
from ki_gen.prompts import (
CYPHER_GENERATION_PROMPT,
CONCEPT_SELECTION_PROMPT,
BINARY_GRADER_PROMPT,
SCORE_GRADER_PROMPT,
RELEVANT_CONCEPTS_PROMPT,
)
# Import get_model which now handles Gemini
from ki_gen.utils import ConfigSchema, DocRetrieverState, get_model, format_doc
# ... (extract_cypher remains the same)
def extract_cypher(text: str) -> str:
"""Extract Cypher code from a text.
Args:
text: Text to extract Cypher code from.
Returns:
Cypher code extracted from the text.
"""
# The pattern to find Cypher code enclosed in triple backticks
pattern_1 = r"```cypher\n(.*?)```"
pattern_2 = r"```\n(.*?)```"
# Find all matches in the input text
matches_1 = re.findall(pattern_1, text, re.DOTALL)
matches_2 = re.findall(pattern_2, text, re.DOTALL)
return [
matches_1[0] if matches_1 else text,
matches_2[0] if matches_2 else text,
text
]
# Update default model and use get_model
def get_cypher_gen_chain(model: str = "gemini-2.0-flash"):
"""
Returns cypher gen chain using specified model for generation
This is used when the 'auto' cypher generation method has been configured
"""
llm_cypher_gen = get_model(model)
cypher_gen_chain = CYPHER_GENERATION_PROMPT | llm_cypher_gen | StrOutputParser() | extract_cypher
return cypher_gen_chain
# Update default model and use get_model
def get_concept_selection_chain(model: str = "gemini-2.0-flash"):
"""
Returns a chain to select the most relevant topic using specified model for generation.
This is used when the 'guided' cypher generation method has been configured
"""
llm_topic_selection = get_model(model)
print(f"FOUND LLM TOPIC SELECTION FOR THE CONCEPT SELECTION PROMPT : {llm_topic_selection}")
topic_selection_chain = CONCEPT_SELECTION_PROMPT | llm_topic_selection | StrOutputParser()
return topic_selection_chain
# ... (get_concepts remains the same)
def get_concepts(graph: Neo4jGraph):
concept_cypher = "MATCH (c:Concept) return c"
if isinstance(graph, Neo4jGraph):
concepts = graph.query(concept_cypher)
else:
user_input = input("Topics : ")
concepts = eval(user_input)
concepts_name = [concept['c']['name'] for concept in concepts]
return concepts_name
# Update to use get_model, remove Groq error handling
def get_related_concepts(graph: Neo4jGraph, question: str):
concepts = get_concepts(graph)
# Use get_model
llm = get_model()
print(f"this is the llm variable : {llm}")
def parse_answer(llm_answer : str):
try:
print(f"This the llm_answer : {llm_answer}")
# Adjust parsing if Gemini output format differs
return re.split("\n(?:\d)+\.\s", llm_answer.split("Concepts:")[1])[1:]
except Exception as e:
print(f"Error parsing LLM concept answer: {e}")
return [] # Return empty list on parsing error
related_concepts_chain = RELEVANT_CONCEPTS_PROMPT | llm | StrOutputParser() | parse_answer
print(f"This is the question of the user : {question}")
print(f"This is the concepts of the user : {concepts}")
# Remove specific Groq error handling block
try:
related_concepts_raw = related_concepts_chain.invoke({"user_query" : question, "concepts" : '\n'.join(concepts)})
print(f"related_concepts_raw : {related_concepts_raw}")
except Exception as e:
# Add generic error handling/logging for Gemini if needed
print(f"Error invoking related concepts chain: {e}")
related_concepts_raw = [] # Assign empty list on error
# We clean up the list we received from the LLM in case there were some hallucinations
related_concepts_cleaned = []
for related_concept in related_concepts_raw:
# If the concept returned from the LLM is in the list we keep it
if related_concept in concepts:
related_concepts_cleaned.append(related_concept)
else:
# The LLM sometimes only forgets a few words from the concept name
# We check if the generated concept is a substring of an existing one and if it is the case add it to the list
for concept in concepts:
if related_concept in concept:
related_concepts_cleaned.append(concept)
break
# TODO : Add concepts found via similarity search
return related_concepts_cleaned
# ... (build_concept_string, get_global_concepts remain the same)
def build_concept_string(graph: Neo4jGraph, concept_list: list[str]):
concept_string = ""
for concept in concept_list:
concept_description_query = f"""
MATCH (c:Concept {{name: "{concept}" }}) RETURN c.description
"""
concept_description = graph.query(concept_description_query)[0]['c.description']
concept_string += f"name: {concept}\ndescription: {concept_description}\n\n"
return concept_string
def get_global_concepts(graph: Neo4jGraph):
concept_cypher = "MATCH (gc:GlobalConcept) return gc"
if isinstance(graph, Neo4jGraph):
concepts = graph.query(concept_cypher)
else:
user_input = input("Topics : ")
concepts = eval(user_input)
concepts_name = [concept['gc']['name'] for concept in concepts]
return concepts_name
# Update concept selection error handling
def generate_cypher(state: DocRetrieverState, config: ConfigSchema):
"""
The node where the cypher is generated
"""
graph = config["configurable"].get("graph")
# --- Correction Applied Here ---
# Use .get() for safer access to 'query'
question = state.get('query')
if not question:
# Handle the case where query is missing
print("Error: 'query' key not found in state for generate_cypher node.")
# Return an empty list or appropriate error state
# This prevents the KeyError and stops processing for this branch if query is missing
return {"cyphers": []}
# --- End of Correction ---
related_concepts = get_related_concepts(graph, question)
cyphers = []
if config["configurable"].get("cypher_gen_method") == 'auto':
cypher_gen_chain = get_cypher_gen_chain()
cyphers = cypher_gen_chain.invoke({
"schema": graph.schema,
"question": question,
"concepts": related_concepts
})
# Remove specific Groq error handling block
try:
if config["configurable"].get("cypher_gen_method") == 'guided':
concept_selection_chain = get_concept_selection_chain()
print(f"Concept selection chain is : {concept_selection_chain}")
# Ensure 'current_plan_step' is also safely accessed if needed here, though it's used later
selected_topic = concept_selection_chain.invoke({"question" : question, "concepts": get_concepts(graph)})
print(f"Selected topic are : {selected_topic}")
# Safely get 'current_plan_step', defaulting to 0 if not found
current_plan_step = state.get('current_plan_step', 0)
cyphers = [generate_cypher_from_topic(selected_topic, current_plan_step)]
print(f"Cyphers are : {cyphers}")
except Exception as e:
# Add generic error handling/logging for Gemini if needed
print(f"Error during guided cypher generation: {e}")
cyphers = [] # Assign empty list on error
if config["configurable"].get("validate_cypher"):
# Ensure graph schema is correctly fetched if needed
if graph and hasattr(graph, 'structured_schema'):
corrector_schema = [Schema(el["start"], el["type"], el["end"]) for el in graph.structured_schema.get("relationships", [])]
cypher_corrector = CypherQueryCorrector(corrector_schema)
# Apply corrector only if cyphers were generated
if cyphers:
try:
cyphers = [cypher_corrector(cypher) for cypher in cyphers]
except Exception as corr_e:
print(f"Error during cypher correction: {corr_e}")
# Decide how to handle correction errors, maybe keep original cyphers
else:
print("Warning: Cypher validation skipped, graph or schema unavailable.")
return {"cyphers" : cyphers}
# ... (generate_cypher_from_topic, get_docs remain the same)
def generate_cypher_from_topic(selected_concept: str, plan_step: int):
"""
Helper function used when the 'guided' cypher generation method has been configured
"""
print(f"L.176 PLAN STEP : {plan_step}")
cypher_el = "(n) return n.title, n.description"
match plan_step:
case 0:
cypher_el = "(ts:TechnicalSpecification) RETURN ts.title, ts.scope, ts.description"
case 1:
cypher_el = "(rp:ResearchPaper) RETURN rp.title, rp.abstract"
case 2:
cypher_el = "(ki:KeyIssue) RETURN ki.description"
return f"MATCH (c:Concept {{name:'{selected_concept}'}})-[:RELATED_TO]-{cypher_el}"
def get_docs(state:DocRetrieverState, config:ConfigSchema):
"""
This node retrieves docs from the graph using the generated cypher
"""
graph = config["configurable"].get("graph")
output = []
if graph is not None and state.get("cyphers"): # Check if cyphers exist
for cypher in state["cyphers"]:
try:
output = graph.query(cypher)
# Assuming the first successful query is sufficient
if output:
break
except Exception as e:
print(f"Failed to retrieve docs with cypher '{cypher}': {e}")
# Continue to try next cypher if one fails
# Clean up the docs we received as there may be duplicates depending on the cypher query
all_docs = []
for doc in output:
unwinded_doc = {}
# Ensure doc is a dictionary before iterating
if isinstance(doc, dict):
for key in doc:
if isinstance(doc[key], dict):
# If a value is a dict, treat it as a separate document
all_docs.append(doc[key])
else:
unwinded_doc.update({key: doc[key]})
# Add the unwinded parts if any keys were not dictionaries
if unwinded_doc:
all_docs.append(unwinded_doc)
filtered_docs = []
seen_docs = set() # Use a set for faster duplicate checking based on a unique identifier
for doc in all_docs:
# Create a tuple of items to check for duplicates, assuming dicts are hashable
# If dicts contain unhashable types (like lists), convert them to strings or use a primary key
try:
doc_tuple = tuple(sorted(doc.items()))
if doc_tuple not in seen_docs:
filtered_docs.append(doc)
seen_docs.add(doc_tuple)
except TypeError:
# Handle cases where doc items are not hashable (e.g., contain lists/dicts)
# Fallback: convert doc to string for uniqueness check (less reliable)
doc_str = str(sorted(doc.items()))
if doc_str not in seen_docs:
filtered_docs.append(doc)
seen_docs.add(doc_str)
return {"docs": filtered_docs}
# Data model
class GradeDocumentsBinary(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(
description="Documents are relevant to the question, 'yes' or 'no'"
)
# Update default model and use get_model
def get_binary_grader(model="gemini-2.0-flash"):
"""
Returns a binary grader to evaluate relevance of documents using specified model for generation
This is used when the 'binary' evaluation method has been configured
"""
llm_grader_binary = get_model(model)
# Check if the model supports structured output, otherwise use standard invocation
try:
# Attempt to get structured output
structured_llm_grader_binary = llm_grader_binary.with_structured_output(GradeDocumentsBinary)
retrieval_grader_binary = BINARY_GRADER_PROMPT | structured_llm_grader_binary
except NotImplementedError:
print(f"Warning: Model {model} may not support structured output directly for binary grading. Falling back.")
# Fallback: parse the string output if structured output fails
from langchain_core.output_parsers import SimpleJsonOutputParser
# You might need to adjust the prompt to explicitly ask for JSON
retrieval_grader_binary = BINARY_GRADER_PROMPT | llm_grader_binary | SimpleJsonOutputParser() # Or StrOutputParser and manual parsing
return retrieval_grader_binary
class GradeDocumentsScore(BaseModel):
"""Score for relevance check on retrieved documents."""
score: float = Field(
description="Documents are relevant to the question, score between 0 (completely irrelevant) and 1 (perfectly relevant)"
)
# Update default model and use get_model
def get_score_grader(model="gemini-2.0-flash"):
"""
Returns a score grader to evaluate relevance of documents using specified model for generation
This is used when the 'score' evaluation method has been configured
"""
llm_grader_score = get_model(model)
# Check if the model supports structured output
try:
structured_llm_grader_score = llm_grader_score.with_structured_output(GradeDocumentsScore)
retrieval_grader_score = SCORE_GRADER_PROMPT | structured_llm_grader_score
except NotImplementedError:
print(f"Warning: Model {model} may not support structured output directly for score grading. Falling back.")
# Fallback: parse the string output if structured output fails
from langchain_core.output_parsers import SimpleJsonOutputParser
# Adjust prompt if needed
retrieval_grader_score = SCORE_GRADER_PROMPT | llm_grader_score | SimpleJsonOutputParser() # Or StrOutputParser and manual parsing
return retrieval_grader_score
# Update default model
def eval_doc(doc, query, method="binary", threshold=0.7, eval_model="gemini-2.0-flash"):
'''
doc : the document to evaluate
query : the query to which to doc shoud be relevant
method : "binary" or "score"
threshold : for "score" method, score above which a doc is considered relevant
'''
try:
if method == "binary":
retrieval_grader_binary = get_binary_grader(model=eval_model)
result = retrieval_grader_binary.invoke({"question": query, "document":doc})
# Handle both structured and parsed output
binary_score = result.binary_score if isinstance(result, GradeDocumentsBinary) else result.get("binary_score", "no")
return 1 if (binary_score.lower() == 'yes') else 0
elif method == "score":
retrieval_grader_score = get_score_grader(model=eval_model)
result = retrieval_grader_score.invoke({"query": query, "document":doc})
# Handle both structured and parsed output
score = result.score if isinstance(result, GradeDocumentsScore) else result.get("score")
if score is not None:
return score if float(score) >= threshold else 0
else:
print("Warning: Couldn't parse score, marking document as relevant by default.")
return 1 # Default to relevant if score parsing fails
else:
raise ValueError("Invalid method")
except Exception as e:
print(f"Error evaluating document: {e}")
return 0 # Default to irrelevant on error
# Update default model
def eval_docs(state: DocRetrieverState, config: ConfigSchema):
"""
This node performs evaluation of the retrieved docs and
"""
eval_method = config["configurable"].get("eval_method") or "binary"
MAX_DOCS = config["configurable"].get("max_docs") or 15
# Update default model name
eval_model_name = config["configurable"].get("eval_model") or "gemini-2.0-flash"
valid_doc_scores = []
# Ensure 'docs' exists and is a list
docs_to_evaluate = state.get("docs", [])
if not isinstance(docs_to_evaluate, list):
print("Warning: 'docs' is not a list, skipping evaluation.")
docs_to_evaluate = []
# Sample safely
sample_size = min(25, len(docs_to_evaluate))
sampled_docs = sample(docs_to_evaluate, sample_size) if sample_size > 0 else []
for doc in sampled_docs:
# Ensure doc is not None before formatting
if doc is None:
print("Warning: Encountered None document during evaluation, skipping.")
continue
formatted_doc_str = format_doc(doc)
# Add basic check for empty formatted doc
if not formatted_doc_str.strip():
print(f"Warning: Skipping empty formatted document: {doc}")
continue
score = eval_doc(
doc=formatted_doc_str,
query=state["query"], # This line assumes "query" exists in state
method=eval_method,
threshold=config["configurable"].get("eval_threshold") or 0.7,
eval_model=eval_model_name # Pass the eval_model name
)
# Ensure score is numeric before appending
if isinstance(score, (int, float)):
if score > 0: # Only add if relevant (score > 0 or binary score == 1)
valid_doc_scores.append((doc, score))
else:
print(f"Warning: Received non-numeric score ({score}) for doc {doc}, skipping.")
if eval_method == 'score':
# Get at most MAX_DOCS items with the highest score if score method was used
valid_docs_sorted = sorted(valid_doc_scores, key=lambda x: x[1], reverse=True) # Sort descending
valid_docs = [valid_doc[0] for valid_doc in valid_docs_sorted[:MAX_DOCS]]
else:
# Get at mots MAX_DOCS items at random if binary method was used
shuffle(valid_doc_scores)
valid_docs = [valid_doc[0] for valid_doc in valid_doc_scores[:MAX_DOCS]]
# Ensure existing valid_docs is a list before concatenating
existing_valid_docs = state.get("valid_docs", [])
if not isinstance(existing_valid_docs, list):
existing_valid_docs = []
return {"valid_docs": valid_docs + existing_valid_docs}
def build_data_retriever_graph(memory):
"""
Builds the data_retriever graph
"""
#with SqliteSaver.from_conn_string(":memory:") as memory :
graph_builder_doc_retriever = StateGraph(DocRetrieverState)
graph_builder_doc_retriever.add_node("generate_cypher", generate_cypher)
graph_builder_doc_retriever.add_node("get_docs", get_docs)
graph_builder_doc_retriever.add_node("eval_docs", eval_docs)
graph_builder_doc_retriever.add_edge("__start__", "generate_cypher")
graph_builder_doc_retriever.add_edge("generate_cypher", "get_docs")
graph_builder_doc_retriever.add_edge("get_docs", "eval_docs")
graph_builder_doc_retriever.add_edge("eval_docs", "__end__")
graph_doc_retriever = graph_builder_doc_retriever.compile(checkpointer=memory)
return graph_doc_retriever
# Remove Groq specific error handling function
# def error_concept_groq(msg,concepts,groq,question): ...