kig_test / app.py
adrienbrdne's picture
Upload 3 files
f8ac349 verified
raw
history blame
8.22 kB
import os
import streamlit as st
from langchain_community.graphs import Neo4jGraph
import pandas as pd
import json
import time
from ki_gen.planner import build_planner_graph
from ki_gen.utils import init_app, memory
from ki_gen.prompts import get_initial_prompt
from neo4j import GraphDatabase
# Set page config
st.set_page_config(page_title="Key Issue Generator", layout="wide")
# Neo4j Database Configuration
NEO4J_URI = "neo4j+s://4985272f.databases.neo4j.io"
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = os.getenv("neo4j_password")
# API Keys for LLM services
OPENAI_API_KEY = os.getenv("openai_api_key")
GROQ_API_KEY = os.getenv("groq_api_key")
LANGSMITH_API_KEY = os.getenv("langsmith_api_key")
def verify_neo4j_connectivity():
"""Verify connection to Neo4j database"""
try:
with GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD)) as driver:
return driver.verify_connectivity()
except Exception as e:
return f"Error: {str(e)}"
def load_config():
"""Load configuration with custom parameters"""
# Custom configuration based on provided parameters
custom_config = {
"main_llm": "deepseek-r1-distill-llama-70b",
"plan_method": "generation",
"use_detailed_query": False,
"cypher_gen_method": "guided",
"validate_cypher": False,
"summarize_model": "deepseek-r1-distill-llama-70b",
"eval_method": "binary",
"eval_threshold": 0.7,
"max_docs": 15,
"compression_method": "llm_lingua",
"compress_rate": 0.33,
"force_tokens": ["."], # Converting to list format as expected by the application
"eval_model": "deepseek-r1-distill-llama-70b",
"thread_id": "3"
}
# Add Neo4j graph object to config
try:
neo_graph = Neo4jGraph(
url=NEO4J_URI,
username=NEO4J_USERNAME,
password=NEO4J_PASSWORD
)
custom_config["graph"] = neo_graph
except Exception as e:
st.error(f"Error connecting to Neo4j: {e}")
return None
return {"configurable": custom_config}
def generate_key_issues(user_query):
"""Main function to generate key issues from Neo4j data"""
# Initialize application with API keys
init_app(
openai_key=OPENAI_API_KEY,
groq_key=GROQ_API_KEY,
langsmith_key=LANGSMITH_API_KEY
)
# Load configuration with custom parameters
config = load_config()
if not config:
return None
# Create status containers
plan_status = st.empty()
plan_display = st.empty()
retrieval_status = st.empty()
processing_status = st.empty()
# Build planner graph
plan_status.info("Building planner graph...")
graph = build_planner_graph(memory, config["configurable"])
# Execute initial prompt generation
plan_status.info(f"Generating plan for query: {user_query}")
messages_content = []
for event in graph.stream(get_initial_prompt(config, user_query), config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
messages_content.append(event["messages"][-1].content)
# Get the state with the generated plan
state = graph.get_state(config)
steps = [i for i in range(1, len(state.values['store_plan'])+1)]
plan_df = pd.DataFrame({'Plan steps': steps, 'Description': state.values['store_plan']})
# Display the plan
plan_status.success("Plan generation complete!")
plan_display.dataframe(plan_df, use_container_width=True)
# Continue with plan execution for document retrieval
retrieval_status.info("Retrieving documents...")
for event in graph.stream(None, config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
messages_content.append(event["messages"][-1].content)
# Get updated state after document retrieval
snapshot = graph.get_state(config)
doc_count = len(snapshot.values.get('valid_docs', []))
retrieval_status.success(f"Retrieved {doc_count} documents")
# Proceed to document processing
processing_status.info("Processing documents...")
process_steps = ["summarize"] # Using summarize as default processing step
# Update state to indicate human validation is complete and specify processing steps
graph.update_state(config, {'human_validated': True, 'process_steps': process_steps}, as_node="human_validation")
# Continue execution with document processing
for event in graph.stream(None, config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
messages_content.append(event["messages"][-1].content)
# Get final state after processing
final_snapshot = graph.get_state(config)
processing_status.success("Document processing complete!")
if "messages" in final_snapshot.values:
final_result = final_snapshot.values["messages"][-1].content
return final_result, final_snapshot.values.get('valid_docs', [])
return None, []
# App header
st.title("Key Issue Generator")
st.write("Generate key issues from a Neo4j knowledge graph using advanced language models.")
# Check database connectivity
connectivity_status = verify_neo4j_connectivity()
st.sidebar.header("Database Status")
if "Error" not in str(connectivity_status):
st.sidebar.success("Connected to Neo4j database")
else:
st.sidebar.error(f"Database connection issue: {connectivity_status}")
# User input section
st.header("Enter Your Query")
user_query = st.text_area("What would you like to explore?",
"What are the main challenges in AI adoption for healthcare systems?",
height=100)
# Process button
if st.button("Generate Key Issues", type="primary"):
if not OPENAI_API_KEY or not GROQ_API_KEY or not LANGSMITH_API_KEY or not NEO4J_PASSWORD:
st.error("Required API keys or database credentials are missing. Please check your environment variables.")
else:
with st.spinner("Processing your query..."):
start_time = time.time()
final_result, valid_docs = generate_key_issues(user_query)
end_time = time.time()
if final_result:
# Display execution time
st.sidebar.info(f"Total execution time: {round(end_time - start_time, 2)} seconds")
# Display final result
st.header("Generated Key Issues")
st.markdown(final_result)
# Option to download results
st.download_button(
label="Download Results",
data=final_result,
file_name="key_issues_results.txt",
mime="text/plain"
)
# Display retrieved documents in expandable section
if valid_docs:
with st.expander("View Retrieved Documents"):
for i, doc in enumerate(valid_docs):
st.markdown(f"### Document {i+1}")
for key in doc:
st.markdown(f"**{key}**: {doc[key]}")
st.divider()
else:
st.error("An error occurred during processing. Please check the logs for details.")
# Help information in sidebar
with st.sidebar:
st.header("About")
st.info("""
This application uses advanced language models to analyze a Neo4j knowledge graph and generate key issues
based on your query. The process involves:
1. Creating a plan based on your query
2. Retrieving relevant documents from the database
3. Processing and summarizing the information
4. Generating a comprehensive response
""")