from src.services.utils import * from src.services.processor import * def process_input(data): prompt = set_prompt(data.problem) constraints = retrieve_constraints(prompt) constraints_stemmed = stem(constraints, "constraints") save_dataframe(constraints_stemmed, "constraints_stemmed.xlsx") global_tech, global_tech_embeddings = load_technologies() #global_tech, keys, original_tech = preprocess_tech_data(df) save_dataframe(global_tech, "global_tech.xlsx") result_similarities, matrix = get_contrastive_similarities(constraints_stemmed, global_tech, global_tech_embeddings, ) save_to_pickle(result_similarities) print(f"Matrix : {matrix} \n Constraints : {constraints_stemmed} \n Gloabl tech : {global_tech}") best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) best_technologies_id = select_technologies(best_combinations) best_technologies = get_technologies_by_id(best_technologies_id,global_tech) return best_technologies