Spaces:
Sleeping
Sleeping
from src.services.utils import tech_to_dict, stem | |
import requests as r | |
import json | |
import nltk | |
import itertools | |
import numpy as np | |
from sentence_transformers import * | |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def retrieve_constraints(prompt): | |
request_input = {"models": ["meta-llama/llama-4-scout-17b-16e-instruct"], "messages": [{"role":"user", "content":prompt}]} | |
response = r.post("https://organizedprogrammers-bettergroqinterface.hf.space/chat", json=request_input) | |
print(f"response : {response}") | |
decoded_content = json.loads(response.content.decode()) | |
llm_response = decoded_content["content"] | |
start_marker = '{' | |
end_marker = '}' | |
start_index = llm_response.find(start_marker) + len(start_marker) | |
end_index = llm_response.find(end_marker, start_index) | |
json_str = llm_response[start_index:end_index].strip() | |
constraints_json = json.loads("{"+json_str+"}") | |
return constraints_json | |
def preprocess_tech_data(_df): | |
if _df is None or "description" not in _df.columns: | |
return [], [] | |
technologies_list = _df["description"].to_list() | |
tech_dict_raw = tech_to_dict(technologies_list) | |
tech_dict_filtered = [ | |
t for t in tech_dict_raw if ( | |
len(t.get("title", "")) >= 5 and | |
len(t.get("advantages", "")) >= 5 and | |
len(t.get("key_components", "")) >= 5 | |
) | |
] | |
if not tech_dict_filtered: | |
return [], [] | |
processed_tech_wt = stem(tech_dict_filtered,"technologies") | |
for t_item_wt in processed_tech_wt: | |
kc = t_item_wt.get("key_components") | |
if isinstance(kc, str): | |
t_item_wt["key_components"] = ''.join(nltk.sent_tokenize(kc)) | |
else: | |
t_item_wt["key_components"] = "" | |
original_tech_for_display = tech_dict_filtered[:len(processed_tech_wt)] | |
_keys = list(processed_tech_wt[0].keys()) if processed_tech_wt else [] | |
return processed_tech_wt, _keys, original_tech_for_display | |
def remove_over_repeated_technologies(result): | |
total_lists = len(result) | |
tech_title = {} | |
for idx, item in enumerate(result): | |
for tech in item['technologies']: | |
tech_title[tech[0]['title']] = 0 if tech[0]['title'] not in tech_title else tech_title[tech[0]['title']] + 1 | |
threshold = total_lists * 0.3 | |
print(threshold) | |
print(tech_title) | |
to_delete = [] | |
for tech, lists in tech_title.items(): | |
if lists > threshold: | |
print(f"This technology have been found over repeated : " + tech) | |
to_delete.append(tech) | |
for idx, item in enumerate(result): | |
result[idx]['technologies'] = [tech for tech in item['technologies'] if tech[0]['title'] not in to_delete] | |
return result | |
def get_contrastive_similarities(constraints, pre_encoded_tech_data, pre_encoded_tech_embeddings): | |
selected_pairs = [] | |
matrix = [] | |
constraint_descriptions = [c["description"] for c in constraints] | |
constraint_embeddings = model.encode(constraint_descriptions, show_progress_bar=False) | |
for i, constraint in enumerate(constraints): | |
constraint_embedding = constraint_embeddings[i] | |
constraint_matrix = [] | |
for j, tech2 in enumerate(pre_encoded_tech_data): | |
tech_embedding = pre_encoded_tech_embeddings[j] | |
purpose_sim = model.similarity(constraint_embedding, tech_embedding) | |
if np.isnan(purpose_sim): | |
purpose_sim = 0.0 | |
selected_pairs.append({ | |
"constraint": constraint, | |
"id2": tech2["id"], | |
"similarity": purpose_sim | |
}) | |
constraint_matrix.append(purpose_sim) | |
matrix.append(constraint_matrix) | |
return selected_pairs, matrix | |
def find_best_list_combinations(list1: list[str], list2: list[str], matrix) -> list[dict]: | |
if not list1 or not list2: | |
print("Warning: One or both input lists are empty. Returning an empty list.") | |
return [] | |
MIN_SIMILARITY = 0.3 | |
MAX_SIMILARITY = 0.8 | |
possible_matches_for_each_l1 = [] | |
for i in range(len(list1)): | |
valid_matches_for_l1_element = [] | |
for j in range(len(list2)): | |
score = matrix[i][j] | |
if MIN_SIMILARITY <= score <= MAX_SIMILARITY: | |
valid_matches_for_l1_element.append((list2[j], score)) | |
if not valid_matches_for_l1_element: | |
print(f"No valid matches found in list2 for '{list1[i]}' from list1 " | |
f"(score between {MIN_SIMILARITY} and {MAX_SIMILARITY}). " | |
"Returning an empty list as no complete combinations can be formed.") | |
else: | |
possible_matches_for_each_l1.append((valid_matches_for_l1_element, list1[i])) | |
result = [] | |
for tech_list, problem in possible_matches_for_each_l1: | |
sorted_list = sorted( | |
tech_list, | |
key=lambda x: x[1].item() if hasattr(x[1], 'item') else float(x[1]), | |
reverse=True | |
) | |
top5 = sorted_list[:5] | |
result.append({ | |
'technologies': top5, | |
'problem': problem | |
}) | |
result = remove_over_repeated_technologies(result) | |
return result | |
def select_technologies(problem_technology_list): | |
distinct_techs = set() | |
candidate_map = [] | |
for problem_data in problem_technology_list: | |
cand_dict = {} | |
for tech_info, sim in problem_data['technologies']: | |
tech_id = tech_info['id'] | |
distinct_techs.add(tech_id) | |
cand_dict[tech_id] = float(sim) | |
candidate_map.append(cand_dict) | |
distinct_techs = sorted(list(distinct_techs)) | |
n = len(problem_technology_list) | |
if n == 0: | |
return set() | |
min_k = None | |
best_set = None | |
best_avg = -1 | |
print(f"Distinct technologies: {distinct_techs}") | |
print(f"Candidate map: {candidate_map}") | |
print(f"Number of problems: {n}") | |
for k in range(1, len(distinct_techs)+1): | |
if min_k is not None and k > min_k: | |
break | |
for T in itertools.combinations(distinct_techs, k): | |
total_sim = 0.0 | |
covered = True | |
print(f"Trying combination: {T}") | |
for i in range(n): | |
max_sim = -1.0 | |
found = False | |
for tech in T: | |
if tech in candidate_map[i]: | |
found = True | |
sim_val = candidate_map[i][tech] | |
if sim_val > max_sim: | |
max_sim = sim_val | |
if not found: | |
covered = False | |
break | |
else: | |
total_sim += max_sim | |
if covered: | |
avg_sim = total_sim / n | |
if min_k is None or k < min_k: | |
min_k = k | |
best_set = T | |
best_avg = avg_sim | |
elif k == min_k and avg_sim > best_avg: | |
best_set = T | |
best_avg = avg_sim | |
if min_k is not None and k == min_k: | |
break | |
if best_set is None: | |
return set() | |
return set(best_set) |