|
from src.services.utils import * |
|
from src.services.processor import * |
|
|
|
def process_input(data): |
|
prompt = set_prompt(data.problem) |
|
|
|
constraints = retrieve_constraints(prompt) |
|
constraints_stemmed = stem(constraints, "constraints") |
|
|
|
save_dataframe(constraints_stemmed, "constraints_stemmed.xlsx") |
|
|
|
global_tech, global_tech_embeddings = load_technologies() |
|
|
|
|
|
|
|
save_dataframe(global_tech, "global_tech.xlsx") |
|
|
|
result_similarities, matrix = get_contrastive_similarities(constraints_stemmed, global_tech, global_tech_embeddings, ) |
|
|
|
save_to_pickle(result_similarities) |
|
|
|
print(f"Matrix : {matrix} \n Constraints : {constraints_stemmed} \n Gloabl tech : {global_tech}") |
|
|
|
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) |
|
best_technologies_id = select_technologies(best_combinations) |
|
best_technologies = get_technologies_by_id(best_technologies_id,global_tech) |
|
|
|
return best_technologies |