Spaces:
Running
Running
File size: 4,330 Bytes
8b6f532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from typing import List, Dict, Any
import zipfile
import os
import warnings
from openai import OpenAI
from dotenv import load_dotenv
import bm25s
from fastapi.staticfiles import StaticFiles
from nltk.stem import WordNetLemmatizer
import nltk
from fastapi import FastAPI
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
import numpy as np
from pydantic import BaseModel
from sklearn.preprocessing import MinMaxScaler
load_dotenv()
nltk.download('wordnet')
if os.path.exists("bm25s.zip"):
with zipfile.ZipFile("bm25s.zip", 'r') as zip_ref:
zip_ref.extractall(".")
bm25_engine = bm25s.BM25.load("3gpp_bm25_docs", load_corpus=True)
lemmatizer = WordNetLemmatizer()
llm = OpenAI(api_key=os.environ.get("GEMINI"), base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
warnings.filterwarnings("ignore")
app = FastAPI(title="RAGnarok",
description="API to search specifications for RAG")
app.mount("/static", StaticFiles(directory="static"), name="static")
origins = [
"*",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class SearchRequest(BaseModel):
keyword: str
threshold: int
class SearchResponse(BaseModel):
results: List[Dict[str, Any]]
class ChatRequest(BaseModel):
messages: List[Dict[str, str]]
model: str
class ChatResponse(BaseModel):
response: str
@app.get("/")
async def main_menu():
return FileResponse(os.path.join("templates", "index.html"))
@app.post("/chat", response_model=ChatResponse)
def question_the_sources(req: ChatRequest):
model = req.model
resp = llm.chat.completions.create(
messages=req.messages,
model=model
)
return ChatResponse(response=resp.choices[0].message.content)
@app.post("/search", response_model=SearchResponse)
def search_specifications(req: SearchRequest):
keywords = req.keyword
threshold = req.threshold
query = lemmatizer.lemmatize(keywords)
results_out = []
query_tokens = bm25s.tokenize(query)
results, scores = bm25_engine.retrieve(query_tokens, k=len(bm25_engine.corpus))
def calculate_boosted_score(metadata, score, query):
title = {lemmatizer.lemmatize(metadata['title']).lower()}
q = {query.lower()}
spec_id_presence = 0.5 if len(q & {metadata['id']}) > 0 else 0
booster = len(q & title) * 0.5
return score + spec_id_presence + booster
spec_scores = {}
spec_indices = {}
spec_details = {}
for i in range(results.shape[1]):
doc = results[0, i]
score = scores[0, i]
spec = doc["metadata"]["id"]
boosted_score = calculate_boosted_score(doc['metadata'], score, query)
if spec not in spec_scores or boosted_score > spec_scores[spec]:
spec_scores[spec] = boosted_score
spec_indices[spec] = i
spec_details[spec] = {
'original_score': score,
'boosted_score': boosted_score,
'doc': doc
}
def normalize_scores(scores_dict):
if not scores_dict:
return {}
scores_array = np.array(list(scores_dict.values())).reshape(-1, 1)
scaler = MinMaxScaler()
normalized_scores = scaler.fit_transform(scores_array).flatten()
normalized_dict = {}
for i, spec in enumerate(scores_dict.keys()):
normalized_dict[spec] = normalized_scores[i]
return normalized_dict
normalized_scores = normalize_scores(spec_scores)
for spec in spec_details:
spec_details[spec]["normalized_score"] = normalized_scores[spec]
unique_specs = sorted(normalized_scores.keys(), key=lambda x: normalized_scores[x], reverse=True)
for rank, spec in enumerate(unique_specs, 1):
details = spec_details[spec]
metadata = details['doc']['metadata']
if details['normalized_score'] < threshold / 100:
break
results_out.append({'id': metadata['id'], 'title': metadata['title'], 'section': metadata['section_title'], 'content': details['doc']['text'], 'similarity': int(details['normalized_score']*100)})
return SearchResponse(results=results_out) |