import base64 import json import re from io import BytesIO from typing import Tuple, List, Optional, Dict, Any, Type from PIL import Image from langchain_core.messages import HumanMessage, BaseMessage from hf_chat import HuggingFaceChat from mapcrunch_controller import MapCrunchController # The "Golden" Prompt (v7): add more descprtions in context and task AGENT_PROMPT_TEMPLATE = """ **Mission:** You are an expert geo-location agent. Your goal is to pinpoint our position in as few moves as possible. **Current Status** • Remaining Steps: {remaining_steps} • Actions You Can Take *this* turn: {available_actions} ──────────────────────────────── **Core Principles** 1. **Observe → Orient → Act** Start each turn with a structured three-part reasoning block: **(1) Visual Clues —** plainly describe what you see (signs, text language, road lines, vegetation, building styles, vehicles, terrain, weather, etc.). **(2) Potential Regions —** list the most plausible regions/countries those clues suggest. **(3) Most Probable + Plan —** pick the single likeliest region and explain the next action (move/pan or guess). 2. **Navigate with Labels:** - `MOVE_FORWARD` follows the green **UP** arrow. - `MOVE_BACKWARD` follows the red **DOWN** arrow. - No arrow ⇒ you cannot move that way. 3. **Efficient Exploration:** - **Pan Before You Move:** At fresh spots/intersections, use `PAN_LEFT` / `PAN_RIGHT` first. - After ~2 or 3 fruitless moves in repetitive scenery, turn around. 4. **Be Decisive:** A unique, definitive clue (full address, rare town name, etc.) ⇒ `GUESS` immediately. 5. **Final-Step Rule:** If **Remaining Steps = 1**, you **MUST** `GUESS` and you should carefully check the image and the surroundings. ──────────────────────────────── **Context & Task:** Analyze your full journey history and current view, apply the Core Principles, and decide your next action in the required JSON format. **Action History** {history_text} ──────────────────────────────── **JSON Output Format:**More actions Your response MUST be a valid JSON object wrapped in ```json ... ```. - For exploration: `{{"reasoning": "...", "action_details": {{"action": "ACTION_NAME"}} }}` - For the final guess: `{{"reasoning": "...", "action_details": {{"action": "GUESS", "lat": , "lon": }} }}` """ BENCHMARK_PROMPT = """ Analyze the image and determine its geographic coordinates. 1. Describe visual clues. 2. Suggest potential regions. 3. State your most probable location. 4. Provide coordinates in the last line in this exact format: `Lat: XX.XXXX, Lon: XX.XXXX` """ class GeoBot: def __init__( self, model: Type, model_name: str, use_selenium: bool = True, headless: bool = False, temperature: float = 0.0, ): # Initialize model with temperature parameter model_kwargs = { "temperature": temperature, } # Handle different model types if model == HuggingFaceChat and HuggingFaceChat is not None: model_kwargs["model"] = model_name else: model_kwargs["model"] = model_name try: self.model = model(**model_kwargs) except Exception as e: raise ValueError(f"Failed to initialize model {model_name}: {e}") self.model_name = model_name self.temperature = temperature self.use_selenium = use_selenium self.controller = MapCrunchController(headless=headless) @staticmethod def pil_to_base64(image: Image.Image) -> str: buffered = BytesIO() image.thumbnail((1024, 1024)) image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def _create_message_with_history( self, prompt: str, image_b64_list: List[str] ) -> List[HumanMessage]: """Creates a message for the LLM that includes text and a sequence of images.""" content = [{"type": "text", "text": prompt}] # Add the JSON format instructions right after the main prompt text content.append( { "type": "text", "text": '\n**JSON Output Format:**\nYour response MUST be a valid JSON object wrapped in ```json ... ```.\n- For exploration: `{{"reasoning": "...", "action_details": {{"action": "ACTION_NAME"}} }}`\n- For the final guess: `{{"reasoning": "...", "action_details": {{"action": "GUESS", "lat": , "lon": }} }}`', } ) for b64_string in image_b64_list: content.append( { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_string}"}, } ) return [HumanMessage(content=content)] def _create_llm_message(self, prompt: str, image_b64: str) -> List[HumanMessage]: """Original method for single-image analysis (benchmark).""" return [ HumanMessage( content=[ {"type": "text", "text": prompt}, { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}, }, ] ) ] def _parse_agent_response(self, response: BaseMessage) -> Optional[Dict[str, Any]]: """ Robustly parses JSON from the LLM response, handling markdown code blocks. """ try: assert isinstance(response.content, str), "Response content is not a string" content = response.content.strip() match = re.search(r"```json\s*(\{.*?\})\s*```", content, re.DOTALL) if match: json_str = match.group(1) else: json_str = content return json.loads(json_str) except (json.JSONDecodeError, AttributeError) as e: print(f"Invalid JSON from LLM: {e}\nFull response was:\n{response.content}") return None def init_history(self) -> List[Dict[str, Any]]: """Initialize an empty history list for agent steps.""" return [] def add_step_to_history( self, history: List[Dict[str, Any]], screenshot_b64: str, decision: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """ Add a step to the history with proper structure. Returns the step dictionary that was added. """ step = { "screenshot_b64": screenshot_b64, "reasoning": decision.get("reasoning", "N/A") if decision else "N/A", "action_details": decision.get("action_details", {"action": "N/A"}) if decision else {"action": "N/A"}, } history.append(step) return step def generate_history_text(self, history: List[Dict[str, Any]]) -> str: """Generate formatted history text for prompt.""" if not history: return "No history yet. This is the first step." history_text = "" for i, h in enumerate(history): history_text += f"--- History Step {i + 1} ---\n" history_text += f"Reasoning: {h.get('reasoning', 'N/A')}\n" history_text += ( f"Action: {h.get('action_details', {}).get('action', 'N/A')}\n\n" ) return history_text def get_history_images(self, history: List[Dict[str, Any]]) -> List[str]: """Extract image base64 strings from history.""" return [h["screenshot_b64"] for h in history] def execute_agent_step( self, history: List[Dict[str, Any]], remaining_steps: int, current_screenshot_b64: str, available_actions: List[str], ) -> Optional[Dict[str, Any]]: """ Execute a single agent step: generate prompt, get AI decision, return decision. This is the core step logic extracted for reuse. """ history_text = self.generate_history_text(history) image_b64_for_prompt = self.get_history_images(history) + [ current_screenshot_b64 ] prompt = AGENT_PROMPT_TEMPLATE.format( remaining_steps=remaining_steps, history_text=history_text, available_actions=available_actions, ) try: message = self._create_message_with_history( prompt, image_b64_for_prompt[-1:] ) response = self.model.invoke(message) decision = self._parse_agent_response(response) except Exception as e: print(f"Error during model invocation: {e}") decision = None if not decision: print( "Response parsing failed or model error. Using default recovery action: PAN_RIGHT." ) decision = { "reasoning": "Recovery due to parsing failure or model error.", "action_details": {"action": "PAN_RIGHT"}, } return decision def execute_action(self, action: str) -> bool: """ Execute the given action using the controller. Returns True if action was executed, False if it was GUESS. """ if action == "GUESS": return False elif action == "MOVE_FORWARD": self.controller.move("forward") elif action == "MOVE_BACKWARD": self.controller.move("backward") elif action == "PAN_LEFT": self.controller.pan_view("left") elif action == "PAN_RIGHT": self.controller.pan_view("right") return True def run_agent_loop( self, max_steps: int = 10, step_callback=None ) -> Optional[Tuple[float, float]]: """ Enhanced agent loop that calls a callback function after each step for UI updates. Args: max_steps: Maximum number of steps to take step_callback: Function called after each step with step info Signature: callback(step_info: dict) -> None Returns: Final guess coordinates (lat, lon) or None if no guess made """ history = self.init_history() for step in range(max_steps, 0, -1): step_num = max_steps - step + 1 print(f"\n--- Step {step_num}/{max_steps} ---") # Setup and screenshot self.controller.setup_clean_environment() self.controller.label_arrows_on_screen() screenshot_bytes = self.controller.take_street_view_screenshot() if not screenshot_bytes: print("Failed to take screenshot. Ending agent loop.") return None current_screenshot_b64 = self.pil_to_base64( image=Image.open(BytesIO(screenshot_bytes)) ) available_actions = self.controller.get_available_actions() print(f"Available actions: {available_actions}") # Force guess on final step or get AI decision if step == 1: # Final step # Force a guess with fallback logic decision = { "reasoning": "Maximum steps reached, forcing final guess.", "action_details": {"action": "GUESS", "lat": 0.0, "lon": 0.0}, } # Try to get a real guess from AI try: ai_decision = self.execute_agent_step( history, step, current_screenshot_b64, available_actions ) if ( ai_decision and ai_decision.get("action_details", {}).get("action") == "GUESS" ): decision = ai_decision except Exception as e: print( f"\nERROR: An exception occurred during the final GUESS attempt: {e}. Using fallback (0,0).\n" ) else: # Normal step execution decision = self.execute_agent_step( history, step, current_screenshot_b64, available_actions ) # Create step_info with current history BEFORE adding current step # This shows the history up to (but not including) the current step step_info = { "step_num": step_num, "max_steps": max_steps, "remaining_steps": step, "screenshot_bytes": screenshot_bytes, "screenshot_b64": current_screenshot_b64, "available_actions": available_actions, "is_final_step": step == 1, "reasoning": decision.get("reasoning", "N/A"), "action_details": decision.get("action_details", {"action": "N/A"}), "history": history.copy(), # History up to current step (excluding current) } action_details = decision.get("action_details", {}) action = action_details.get("action") print(f"AI Reasoning: {decision.get('reasoning', 'N/A')}") print(f"AI Action: {action}") # Call UI callback before executing action if step_callback: try: step_callback(step_info) except Exception as e: print(f"Warning: UI callback failed: {e}") # Add step to history AFTER callback (so next iteration has this step in history) self.add_step_to_history(history, current_screenshot_b64, decision) # Execute action if action == "GUESS": lat, lon = action_details.get("lat"), action_details.get("lon") if lat is not None and lon is not None: return lat, lon else: print("Invalid guess coordinates, using fallback") return 0.0, 0.0 # Fallback coordinates else: self.execute_action(action) print("Max steps reached. Agent did not make a final guess.") return None def analyze_image(self, image: Image.Image) -> Optional[Tuple[float, float]]: image_b64 = self.pil_to_base64(image) message = self._create_llm_message(BENCHMARK_PROMPT, image_b64) try: response = self.model.invoke(message) print(f"\nLLM Response:\n{response.content}") except Exception as e: print(f"Error during image analysis: {e}") return None content = response.content.strip() last_line = "" for line in reversed(content.split("\n")): if "lat" in line.lower() and "lon" in line.lower(): last_line = line break if not last_line: return None numbers = re.findall(r"[-+]?\d*\.\d+|\d+", last_line) if len(numbers) < 2: return None lat, lon = float(numbers[0]), float(numbers[1]) return lat, lon def take_screenshot(self) -> Optional[Image.Image]: screenshot_bytes = self.controller.take_street_view_screenshot() if screenshot_bytes: return Image.open(BytesIO(screenshot_bytes)) return None def close(self): if self.controller: self.controller.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()