Spaces:
Running
Running
File size: 7,440 Bytes
f83d6df 749ea04 f83d6df a9dca21 fc23f51 a9dca21 749ea04 a9dca21 749ea04 f83d6df a9dca21 749ea04 a9dca21 749ea04 a9dca21 f83d6df 749ea04 a9dca21 749ea04 f83d6df 749ea04 a9dca21 f83d6df 749ea04 fc23f51 749ea04 a9dca21 749ea04 a9dca21 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 a9dca21 749ea04 f83d6df a9dca21 f83d6df a9dca21 749ea04 a9dca21 749ea04 a9dca21 749ea04 f83d6df a9dca21 f83d6df 749ea04 f83d6df a9dca21 749ea04 f83d6df a9dca21 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df e1255d1 f83d6df a9dca21 749ea04 a9dca21 e1255d1 749ea04 a9dca21 e1255d1 749ea04 f83d6df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import argparse
import json
from geo_bot import GeoBot
from benchmark import MapGuesserBenchmark
from data_collector import DataCollector
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM, get_model_class
def agent_mode(
model_name: str,
steps: int,
headless: bool,
samples: int,
dataset_name: str = "default",
temperature: float = 0.0,
):
"""
Runs the AI Agent in a benchmark loop over multiple samples,
using multi-step exploration for each.
"""
print(
f"Starting Agent Mode: model={model_name}, steps={steps}, samples={samples}, dataset={dataset_name}, temperature={temperature}"
)
data_paths = get_data_paths(dataset_name)
try:
with open(data_paths["golden_labels"], "r", encoding="utf-8") as f:
golden_labels = json.load(f).get("samples", [])
except FileNotFoundError:
print(
f"Error: Dataset '{dataset_name}' not found at {data_paths['golden_labels']}."
)
return
if not golden_labels:
print(f"Error: No samples found in dataset '{dataset_name}'.")
return
num_to_test = min(samples, len(golden_labels))
test_samples = golden_labels[:num_to_test]
print(f"Will run on {len(test_samples)} samples from dataset '{dataset_name}'.")
config = MODELS_CONFIG.get(model_name)
model_class = get_model_class(config["class"])
model_instance_name = config["model_name"]
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=True)
all_results = []
with GeoBot(
model=model_class,
model_name=model_instance_name,
headless=headless,
temperature=temperature,
) as bot:
for i, sample in enumerate(test_samples):
print(
f"\n--- Running Sample {i + 1}/{len(test_samples)} (ID: {sample.get('id')}) ---"
)
if not bot.controller.load_location_from_data(sample):
print(
f" ❌ Failed to load location for sample {sample.get('id')}. Skipping."
)
continue
bot.controller.setup_clean_environment()
final_guess = bot.run_agent_loop(max_steps=steps)
true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
distance_km = None
is_success = False
if final_guess:
distance_km = benchmark_helper.calculate_distance(
true_coords, final_guess
)
if distance_km is not None:
is_success = distance_km <= SUCCESS_THRESHOLD_KM
print(f"\nResult for Sample ID: {sample.get('id')}")
print(
f" Ground Truth: Lat={true_coords['lat']:.4f}, Lon={true_coords['lng']:.4f}"
)
print(
f" Final Guess: Lat={final_guess[0]:.4f}, Lon={final_guess[1]:.4f}"
)
dist_str = f"{distance_km:.1f} km" if distance_km is not None else "N/A"
print(f" Distance: {dist_str}, Success: {is_success}")
else:
print("Agent did not make a final guess for this sample.")
all_results.append(
{
"sample_id": sample.get("id"),
"model": bot.model_name,
"true_coordinates": true_coords,
"predicted_coordinates": final_guess,
"distance_km": distance_km,
"success": is_success,
}
)
summary = benchmark_helper.generate_summary(all_results)
if summary:
print(
f"\n\n--- Agent Benchmark Complete for dataset '{dataset_name}'! Summary ---"
)
for model, stats in summary.items():
print(f"Model: {model}")
print(f" Success Rate: {stats['success_rate'] * 100:.1f}%")
print(f" Avg Distance: {stats['average_distance_km']:.1f} km")
print("Agent Mode finished.")
def benchmark_mode(
models: list,
samples: int,
headless: bool,
dataset_name: str = "default",
temperature: float = 0.0,
):
"""Runs the benchmark on pre-collected data."""
print(
f"Starting Benchmark Mode: models={models}, samples={samples}, dataset={dataset_name}, temperature={temperature}"
)
benchmark = MapGuesserBenchmark(dataset_name=dataset_name, headless=headless)
summary = benchmark.run_benchmark(
models=models, max_samples=samples, temperature=temperature
)
if summary:
print(f"\n--- Benchmark Complete for dataset '{dataset_name}'! Summary ---")
for model, stats in summary.items():
print(f"Model: {model}")
print(f" Success Rate: {stats['success_rate'] * 100:.1f}%")
print(f" Avg Distance: {stats['average_distance_km']:.1f} km")
def collect_mode(dataset_name: str, samples: int, headless: bool):
"""Collects data for a new dataset."""
print(f"Starting Data Collection: dataset={dataset_name}, samples={samples}")
with DataCollector(dataset_name=dataset_name, headless=headless) as collector:
collector.collect_samples(num_samples=samples)
print(f"Data collection complete for dataset '{dataset_name}'.")
def main():
parser = argparse.ArgumentParser(description="MapCrunch AI Agent & Benchmark")
parser.add_argument(
"--mode",
choices=["agent", "benchmark", "collect"],
default="agent",
help="Operation mode.",
)
parser.add_argument(
"--dataset",
default="default",
help="Dataset name to use or create.",
)
parser.add_argument(
"--model",
choices=list(MODELS_CONFIG.keys()),
default="gpt-4o",
help="Model to use.",
)
parser.add_argument(
"--steps", type=int, default=10, help="[Agent] Number of exploration steps."
)
parser.add_argument(
"--samples",
type=int,
default=50,
help="Number of samples to process for the selected mode.",
)
parser.add_argument(
"--headless", action="store_true", help="Run browser in headless mode."
)
parser.add_argument(
"--models",
nargs="+",
choices=list(MODELS_CONFIG.keys()),
help="[Benchmark] Models to benchmark.",
)
parser.add_argument(
"--temperature",
type=float,
default=0.0,
help="Temperature parameter for LLM sampling (0.0 = deterministic, higher = more random). Default: 0.0",
)
args = parser.parse_args()
if args.mode == "collect":
collect_mode(
dataset_name=args.dataset,
samples=args.samples,
headless=args.headless,
)
elif args.mode == "agent":
agent_mode(
model_name=args.model,
steps=args.steps,
headless=args.headless,
samples=args.samples,
dataset_name=args.dataset,
temperature=args.temperature,
)
elif args.mode == "benchmark":
benchmark_mode(
models=args.models or [args.model],
samples=args.samples,
headless=args.headless,
dataset_name=args.dataset,
temperature=args.temperature,
)
if __name__ == "__main__":
main()
|