Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,11 @@
|
|
1 |
from joblib import dump,load
|
2 |
-
|
3 |
-
from sklearn.model_selection import train_test_split
|
4 |
-
import numpy as np
|
5 |
import warnings
|
6 |
-
from sklearn.model_selection import StratifiedShuffleSplit
|
7 |
import gradio as gr
|
8 |
import cv2
|
9 |
warnings.filterwarnings("ignore")
|
10 |
-
|
11 |
-
|
12 |
-
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=5000, random_state=42)
|
13 |
-
data_split = StratifiedShuffleSplit(n_splits=1, test_size=0.9, random_state=0) # split data one time into two parts with ratio 10%/90%
|
14 |
-
for i, (train_index, test_index) in enumerate(data_split.split(X_train, y_train)):
|
15 |
-
print(f"Fold {i}:")
|
16 |
-
print(f" Train: index={train_index}, size = {len(train_index)}")
|
17 |
-
print(f" Remaining: index={test_index}, size = {len(test_index)}")
|
18 |
-
|
19 |
-
small_X_train = X_train[train_index]
|
20 |
-
small_y_train = y_train[train_index]
|
21 |
-
|
22 |
-
train_size, width, height = small_X_train.shape
|
23 |
-
train_size_val, width, height = X_val.shape
|
24 |
-
train_size_test, width, height = X_test.shape
|
25 |
-
small_X_train_flatten = small_X_train.reshape(train_size, width * height)
|
26 |
-
X_valid_flatten = X_val.reshape(train_size_val, width * height)
|
27 |
-
X_test_flatten = X_test.reshape(train_size_test, width * height)
|
28 |
best_knn = load("best_knn.joblib")
|
29 |
best_log = load("best_log.joblib")
|
30 |
best_knn.fit(small_X_train_flatten,small_y_train)
|
|
|
1 |
from joblib import dump,load
|
2 |
+
import pandas as pd
|
|
|
|
|
3 |
import warnings
|
|
|
4 |
import gradio as gr
|
5 |
import cv2
|
6 |
warnings.filterwarnings("ignore")
|
7 |
+
small_X_train_flatten = pd.read_csv('Homework01_trainX_image_flatten.csv')
|
8 |
+
small_y_train = pd.read_csv('Homework01_trainy_image_flatten.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
best_knn = load("best_knn.joblib")
|
10 |
best_log = load("best_log.joblib")
|
11 |
best_knn.fit(small_X_train_flatten,small_y_train)
|