OmkarDattaSowri commited on
Commit
c64af3f
·
verified ·
1 Parent(s): ce17336

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -22
app.py CHANGED
@@ -1,30 +1,11 @@
1
  from joblib import dump,load
2
- from tensorflow.keras.datasets import fashion_mnist
3
- from sklearn.model_selection import train_test_split
4
- import numpy as np
5
  import warnings
6
- from sklearn.model_selection import StratifiedShuffleSplit
7
  import gradio as gr
8
  import cv2
9
  warnings.filterwarnings("ignore")
10
-
11
- (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()# Split the training data into training and validation sets
12
- X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=5000, random_state=42)
13
- data_split = StratifiedShuffleSplit(n_splits=1, test_size=0.9, random_state=0) # split data one time into two parts with ratio 10%/90%
14
- for i, (train_index, test_index) in enumerate(data_split.split(X_train, y_train)):
15
- print(f"Fold {i}:")
16
- print(f" Train: index={train_index}, size = {len(train_index)}")
17
- print(f" Remaining: index={test_index}, size = {len(test_index)}")
18
-
19
- small_X_train = X_train[train_index]
20
- small_y_train = y_train[train_index]
21
-
22
- train_size, width, height = small_X_train.shape
23
- train_size_val, width, height = X_val.shape
24
- train_size_test, width, height = X_test.shape
25
- small_X_train_flatten = small_X_train.reshape(train_size, width * height)
26
- X_valid_flatten = X_val.reshape(train_size_val, width * height)
27
- X_test_flatten = X_test.reshape(train_size_test, width * height)
28
  best_knn = load("best_knn.joblib")
29
  best_log = load("best_log.joblib")
30
  best_knn.fit(small_X_train_flatten,small_y_train)
 
1
  from joblib import dump,load
2
+ import pandas as pd
 
 
3
  import warnings
 
4
  import gradio as gr
5
  import cv2
6
  warnings.filterwarnings("ignore")
7
+ small_X_train_flatten = pd.read_csv('Homework01_trainX_image_flatten.csv')
8
+ small_y_train = pd.read_csv('Homework01_trainy_image_flatten.csv')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  best_knn = load("best_knn.joblib")
10
  best_log = load("best_log.joblib")
11
  best_knn.fit(small_X_train_flatten,small_y_train)