Spaces:
Sleeping
Sleeping
File size: 8,361 Bytes
2c1ff66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio as gr
import json
from langdetect import detect
from transformers import pipeline
import warnings
warnings.filterwarnings("ignore")
# Load language to model mapping
def load_language_model_map():
"""Load mapping between languages and translation models"""
return {
'ar': 'Helsinki-NLP/opus-mt-ar-en', # Arabic to English
'fr': 'Helsinki-NLP/opus-mt-fr-en', # French to English
'de': 'Helsinki-NLP/opus-mt-de-en', # German to English
'es': 'Helsinki-NLP/opus-mt-es-en', # Spanish to English
'it': 'Helsinki-NLP/opus-mt-it-en', # Italian to English
}
# Language code to full name mapping
LANGUAGE_NAMES = {
'en': 'English',
'ar': 'Arabic',
'fr': 'French',
'de': 'German',
'es': 'Spanish',
'it': 'Italian',
}
# Initialize translation pipelines
def get_translation_pipelines():
"""Initialize translation pipelines for different target languages from JSON"""
try:
with open('lang_model_map.json', 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract output language mappings
output_langs = data['language_to_model_mapping']['output_languages']
pipelines = {}
for lang_name, lang_info in output_langs.items():
# Only load the main target languages to avoid memory issues
if lang_name in ['Hebrew', 'Arabic', 'Spanish', 'French']:
pipelines[lang_name] = pipeline("translation", model=lang_info['model'])
return pipelines
except FileNotFoundError:
# Fallback to hardcoded pipelines if JSON file not found
print("Warning: lang_model_map.json not found. Using fallback pipelines.")
return {
'Hebrew': pipeline("translation", model="Helsinki-NLP/opus-mt-en-he"),
'Arabic': pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar"),
'Spanish': pipeline("translation", model="Helsinki-NLP/opus-mt-en-es"),
'French': pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
}
# Global variables for caching pipelines
language_model_map = load_language_model_map()
target_pipelines = get_translation_pipelines()
def detect_language(text):
"""Detect the language of input text"""
try:
detected_lang = detect(text)
return detected_lang, LANGUAGE_NAMES.get(detected_lang, detected_lang)
except:
return 'unknown', 'Unknown'
def translate_to_english(text, source_lang):
"""Translate text from source language to English"""
if source_lang == 'en':
return text
if source_lang in language_model_map:
try:
model_name = language_model_map[source_lang]
translator = pipeline("translation", model=model_name)
result = translator(text, max_length=512)
return result[0]['translation_text']
except Exception as e:
return f"Translation error: {str(e)}"
else:
return "Translation model not available for this language"
def translate_from_english(text, target_languages):
"""Translate English text to target languages"""
translations = {}
for lang_name in target_languages:
if lang_name in target_pipelines:
try:
result = target_pipelines[lang_name](text, max_length=512)
translations[lang_name] = result[0]['translation_text']
except Exception as e:
translations[lang_name] = f"Error: {str(e)}"
else:
translations[lang_name] = "Model not available"
return translations
def smart_translate(input_text, target_lang1, target_lang2, target_lang3):
"""Main translation function"""
if not input_text.strip():
return "Please enter text to translate", "", "", "", "", ""
# Detect source language
source_lang_code, source_lang_name = detect_language(input_text)
# Translate to English first if not already English
english_text = translate_to_english(input_text, source_lang_code)
# Get target languages list
target_languages = []
if target_lang1: target_languages.append(target_lang1)
if target_lang2: target_languages.append(target_lang2)
if target_lang3: target_languages.append(target_lang3)
# Translate to target languages
translations = translate_from_english(english_text, target_languages)
# Format results
result_text = f"**Original Text:** {input_text}\n\n"
result_text += f"**Detected Language:** {source_lang_name} ({source_lang_code})\n\n"
if source_lang_code != 'en':
result_text += f"**English Translation:** {english_text}\n\n"
result_text += "**Translations:**\n"
for lang, translation in translations.items():
result_text += f"• **{lang}:** {translation}\n"
# Return individual translations for display
trans1 = translations.get(target_lang1, "") if target_lang1 else ""
trans2 = translations.get(target_lang2, "") if target_lang2 else ""
trans3 = translations.get(target_lang3, "") if target_lang3 else ""
return result_text, source_lang_name, english_text, trans1, trans2, trans3
# Create and launch the Gradio interface
target_options = list(target_pipelines.keys())
with gr.Blocks(title="Smart Multilingual Translator", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# Smart Multilingual Translator
### Powered by Hugging Face Transformers
This application automatically detects the language of your input text and translates it to your selected target languages.
""")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text in any language...",
lines=5
)
with gr.Row():
target_lang1 = gr.Dropdown(
choices=target_options,
label="Target Language 1",
value="Hebrew"
)
target_lang2 = gr.Dropdown(
choices=target_options,
label="Target Language 2",
value="Arabic"
)
target_lang3 = gr.Dropdown(
choices=target_options,
label="Target Language 3",
value="Spanish"
)
translate_btn = gr.Button("🔄 Translate", variant="primary", size="lg")
with gr.Column(scale=3):
result_display = gr.Markdown(label="Translation Results")
with gr.Row():
with gr.Column():
detected_lang = gr.Textbox(label="Detected Language", interactive=False)
with gr.Column():
english_trans = gr.Textbox(label="English Translation", interactive=False)
with gr.Row():
trans1_output = gr.Textbox(label="Translation 1", interactive=False)
trans2_output = gr.Textbox(label="Translation 2", interactive=False)
trans3_output = gr.Textbox(label="Translation 3", interactive=False)
# Event handlers
translate_btn.click(
fn=smart_translate,
inputs=[input_text, target_lang1, target_lang2, target_lang3],
outputs=[result_display, detected_lang, english_trans, trans1_output, trans2_output, trans3_output]
)
gr.Markdown("""
---
## Supported Languages
### Language Detection (Input)
Arabic (ar) - العربية
English (en) - English
French (fr) - Français
German (de) - Deutsch
Italian (it) - Italiano
Spanish (es) - Español
### Target Languages (Output)
Hebrew (he) - עברית
Arabic (ar) - العربية
Spanish (es) - Español
French (fr) - Français
### Models Used:
- **Language Detection:** langdetect
- **Translation Models:** Helsinki-NLP MarianMT models from Hugging Face
- **Configuration:** Models loaded from lang_model_map.json
""")
interface.launch(share=True) |