File size: 8,361 Bytes
2c1ff66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
import json
from langdetect import detect
from transformers import pipeline
import warnings
warnings.filterwarnings("ignore")

# Load language to model mapping
def load_language_model_map():
    """Load mapping between languages and translation models"""
    return {
        'ar': 'Helsinki-NLP/opus-mt-ar-en',  # Arabic to English
        'fr': 'Helsinki-NLP/opus-mt-fr-en',  # French to English
        'de': 'Helsinki-NLP/opus-mt-de-en',  # German to English
        'es': 'Helsinki-NLP/opus-mt-es-en',  # Spanish to English
        'it': 'Helsinki-NLP/opus-mt-it-en',  # Italian to English
    }

# Language code to full name mapping
LANGUAGE_NAMES = {
    'en': 'English',
    'ar': 'Arabic',
    'fr': 'French', 
    'de': 'German',
    'es': 'Spanish',
    'it': 'Italian',
}

# Initialize translation pipelines
def get_translation_pipelines():
    """Initialize translation pipelines for different target languages from JSON"""
    try:
        with open('lang_model_map.json', 'r', encoding='utf-8') as f:
            data = json.load(f)
            # Extract output language mappings
            output_langs = data['language_to_model_mapping']['output_languages']
            pipelines = {}
            for lang_name, lang_info in output_langs.items():
                # Only load the main target languages to avoid memory issues
                if lang_name in ['Hebrew', 'Arabic', 'Spanish', 'French']:
                    pipelines[lang_name] = pipeline("translation", model=lang_info['model'])
            return pipelines
    except FileNotFoundError:
        # Fallback to hardcoded pipelines if JSON file not found
        print("Warning: lang_model_map.json not found. Using fallback pipelines.")
        return {
            'Hebrew': pipeline("translation", model="Helsinki-NLP/opus-mt-en-he"),
            'Arabic': pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar"), 
            'Spanish': pipeline("translation", model="Helsinki-NLP/opus-mt-en-es"),
            'French': pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
        }

# Global variables for caching pipelines
language_model_map = load_language_model_map()
target_pipelines = get_translation_pipelines()

def detect_language(text):
    """Detect the language of input text"""
    try:
        detected_lang = detect(text)
        return detected_lang, LANGUAGE_NAMES.get(detected_lang, detected_lang)
    except:
        return 'unknown', 'Unknown'

def translate_to_english(text, source_lang):
    """Translate text from source language to English"""
    if source_lang == 'en':
        return text
    
    if source_lang in language_model_map:
        try:
            model_name = language_model_map[source_lang]
            translator = pipeline("translation", model=model_name)
            result = translator(text, max_length=512)
            return result[0]['translation_text']
        except Exception as e:
            return f"Translation error: {str(e)}"
    else:
        return "Translation model not available for this language"

def translate_from_english(text, target_languages):
    """Translate English text to target languages"""
    translations = {}
    
    for lang_name in target_languages:
        if lang_name in target_pipelines:
            try:
                result = target_pipelines[lang_name](text, max_length=512)
                translations[lang_name] = result[0]['translation_text']
            except Exception as e:
                translations[lang_name] = f"Error: {str(e)}"
        else:
            translations[lang_name] = "Model not available"
    
    return translations

def smart_translate(input_text, target_lang1, target_lang2, target_lang3):
    """Main translation function"""
    if not input_text.strip():
        return "Please enter text to translate", "", "", "", "", ""
    
    # Detect source language
    source_lang_code, source_lang_name = detect_language(input_text)
    
    # Translate to English first if not already English
    english_text = translate_to_english(input_text, source_lang_code)
    
    # Get target languages list
    target_languages = []
    if target_lang1: target_languages.append(target_lang1)
    if target_lang2: target_languages.append(target_lang2) 
    if target_lang3: target_languages.append(target_lang3)
    
    # Translate to target languages
    translations = translate_from_english(english_text, target_languages)
    
    # Format results
    result_text = f"**Original Text:** {input_text}\n\n"
    result_text += f"**Detected Language:** {source_lang_name} ({source_lang_code})\n\n"
    
    if source_lang_code != 'en':
        result_text += f"**English Translation:** {english_text}\n\n"
    
    result_text += "**Translations:**\n"
    for lang, translation in translations.items():
        result_text += f"• **{lang}:** {translation}\n"
    
    # Return individual translations for display
    trans1 = translations.get(target_lang1, "") if target_lang1 else ""
    trans2 = translations.get(target_lang2, "") if target_lang2 else ""  
    trans3 = translations.get(target_lang3, "") if target_lang3 else ""
    
    return result_text, source_lang_name, english_text, trans1, trans2, trans3

# Create and launch the Gradio interface
target_options = list(target_pipelines.keys())

with gr.Blocks(title="Smart Multilingual Translator", theme=gr.themes.Soft()) as interface:
    gr.Markdown("""

    # Smart Multilingual Translator

    ### Powered by Hugging Face Transformers

    

    This application automatically detects the language of your input text and translates it to your selected target languages.

    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            input_text = gr.Textbox(
                label="Input Text",
                placeholder="Enter text in any language...",
                lines=5
            )
            
            with gr.Row():
                target_lang1 = gr.Dropdown(
                    choices=target_options,
                    label="Target Language 1",
                    value="Hebrew"
                )
                target_lang2 = gr.Dropdown(
                    choices=target_options,
                    label="Target Language 2", 
                    value="Arabic"
                )
                target_lang3 = gr.Dropdown(
                    choices=target_options,
                    label="Target Language 3",
                    value="Spanish"
                )
            
            translate_btn = gr.Button("🔄 Translate", variant="primary", size="lg")
        
        with gr.Column(scale=3):
            result_display = gr.Markdown(label="Translation Results")
    
    with gr.Row():
        with gr.Column():
            detected_lang = gr.Textbox(label="Detected Language", interactive=False)
        with gr.Column():
            english_trans = gr.Textbox(label="English Translation", interactive=False)
    
    with gr.Row():
        trans1_output = gr.Textbox(label="Translation 1", interactive=False)
        trans2_output = gr.Textbox(label="Translation 2", interactive=False)
        trans3_output = gr.Textbox(label="Translation 3", interactive=False)
    
    # Event handlers
    translate_btn.click(
        fn=smart_translate,
        inputs=[input_text, target_lang1, target_lang2, target_lang3],
        outputs=[result_display, detected_lang, english_trans, trans1_output, trans2_output, trans3_output]
    )
    
    gr.Markdown("""

    ---

    ## Supported Languages

    ### Language Detection (Input)

    Arabic (ar) - العربية

    English (en) - English

    French (fr) - Français

    German (de) - Deutsch

    Italian (it) - Italiano

    Spanish (es) - Español



    ### Target Languages (Output)

    Hebrew (he) - עברית

    Arabic (ar) - العربية

    Spanish (es) - Español

    French (fr) - Français

    

    ### Models Used:

    - **Language Detection:** langdetect

    - **Translation Models:** Helsinki-NLP MarianMT models from Hugging Face

    - **Configuration:** Models loaded from lang_model_map.json

    """)

interface.launch(share=True)