Spaces:
Running
Running
File size: 13,950 Bytes
d218318 6c3cd1d b3cef24 3212eef b3cef24 3212eef 6c3cd1d ced86e4 b3cef24 3212eef 7e971d4 7be18fb 3212eef 7be18fb d218318 3212eef 7be18fb 3212eef d218318 3212eef d218318 3212eef 7be18fb 3212eef d218318 7be18fb 3212eef b3cef24 6c3cd1d 3212eef 6c3cd1d 3212eef 6c3cd1d 3212eef 6c3cd1d 3212eef 6c3cd1d 3212eef 6c3cd1d 3212eef 7e9b550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from flask_cors import CORS
from flask import Flask, request, jsonify
import tempfile
import os
from werkzeug.utils import secure_filename
import logging
from datetime import datetime
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
# Configuration
app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024 # 100MB max file size
ALLOWED_EXTENSIONS = {'wav', 'mp3', 'mp4', 'mpeg', 'mpga', 'm4a', 'webm', 'flac'}
# Initialize model variable
model = None
MODEL_SIZE = "medium" # Use 'tiny' for faster loading on Hugging Face Spaces, change to 'base', 'small', 'medium', or 'large' as needed
# Set cache directory for Hugging Face Spaces
def setup_cache_directory():
"""Setup cache directory for Hugging Face Spaces"""
# Create a writable cache directory in the current working directory
cache_dir = os.path.join(os.getcwd(), ".whisper_cache")
os.makedirs(cache_dir, exist_ok=True)
# Set environment variables for Whisper cache
os.environ['XDG_CACHE_HOME'] = cache_dir
os.environ['WHISPER_CACHE'] = cache_dir
logger.info(f"Cache directory set to: {cache_dir}")
return cache_dir
def load_whisper_model():
"""Load Whisper model with proper error handling"""
global model
try:
# Setup cache directory first
cache_dir = setup_cache_directory()
# Try multiple import strategies for openai-whisper
whisper_module = None
# Strategy 1: Direct import (most common)
try:
import whisper as whisper_module
except ImportError:
pass
# Strategy 2: Try importing as openai_whisper
if whisper_module is None:
try:
import openai_whisper as whisper_module
except ImportError:
pass
# Strategy 3: Try importing with explicit path
if whisper_module is None:
try:
import sys
import importlib.util
# This is a fallback - usually not needed
import whisper as whisper_module
except ImportError:
pass
if whisper_module is None:
logger.error("OpenAI Whisper not installed. Install with: pip install openai-whisper")
return False
# Check if the module has the load_model function
if not hasattr(whisper_module, 'load_model'):
logger.error("Whisper module found but missing 'load_model' function")
logger.error("This suggests you have the wrong 'whisper' package installed")
logger.error("Solution:")
logger.error("1. pip uninstall whisper")
logger.error("2. pip uninstall openai-whisper (if exists)")
logger.error("3. pip install openai-whisper")
logger.error("4. pip install torch torchaudio")
return False
logger.info(f"Loading Whisper model: {MODEL_SIZE}")
logger.info(f"Using cache directory: {cache_dir}")
# Load model with explicit download root
try:
model = whisper_module.load_model(MODEL_SIZE, download_root=cache_dir)
except TypeError:
# Fallback if download_root parameter is not supported
model = whisper_module.load_model(MODEL_SIZE)
logger.info("Whisper model loaded successfully")
return True
except ImportError as e:
logger.error(f"Import error: {e}")
logger.error("OpenAI Whisper not installed. Install with: pip install openai-whisper torch torchaudio")
return False
except AttributeError as e:
logger.error(f"Whisper import error: {e}")
logger.error("Make sure you have the correct whisper package installed:")
logger.error("Solution:")
logger.error("1. pip uninstall whisper")
logger.error("2. pip install openai-whisper torch torchaudio")
return False
except PermissionError as e:
logger.error(f"Permission error: {e}")
logger.error("Cannot write to cache directory. This might be a Hugging Face Spaces limitation.")
logger.error("Trying alternative cache locations...")
# Try alternative cache locations
alternative_dirs = [
"/tmp/.whisper_cache",
os.path.expanduser("~/.whisper_cache"),
"./whisper_models"
]
for alt_dir in alternative_dirs:
try:
os.makedirs(alt_dir, exist_ok=True)
os.environ['XDG_CACHE_HOME'] = alt_dir
os.environ['WHISPER_CACHE'] = alt_dir
logger.info(f"Trying alternative cache: {alt_dir}")
import whisper
model = whisper.load_model(MODEL_SIZE, download_root=alt_dir)
logger.info(f"Successfully loaded model with cache: {alt_dir}")
return True
except Exception as alt_e:
logger.warning(f"Alternative cache {alt_dir} failed: {alt_e}")
continue
logger.error("All cache directory attempts failed")
return False
except Exception as e:
logger.error(f"Error loading Whisper model: {e}")
logger.error("This could be due to:")
logger.error("- Insufficient memory")
logger.error("- Missing PyTorch/CUDA dependencies")
logger.error("- Network issues downloading the model")
logger.error("- Hugging Face Spaces limitations")
return False
# Try to load the model at startup
model_loaded = load_whisper_model()
def allowed_file(filename):
"""Check if the file extension is allowed"""
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def format_timestamp(seconds):
"""Convert seconds to HH:MM:SS.mmm format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = seconds % 60
return f"{hours:02d}:{minutes:02d}:{secs:06.3f}"
@app.route('/', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
"status": "healthy" if model_loaded else "unhealthy",
"message": "Whisper Transcription API is running" if model_loaded else "Whisper model failed to load",
"model": MODEL_SIZE if model_loaded else "none",
"model_loaded": model_loaded,
"timestamp": datetime.now().isoformat()
})
@app.route('/transcribe', methods=['POST'])
def transcribe_audio():
"""
Transcribe audio file and return word-level timestamps
Expected form data:
- audio_file: The audio file to transcribe
- language (optional): Language code (e.g., 'en', 'es', 'fr')
- task (optional): 'transcribe' or 'translate' (default: transcribe)
"""
try:
# Check if model is loaded
if not model_loaded or model is None:
return jsonify({
'error': 'Whisper model not loaded. Please check server logs and ensure openai-whisper is installed correctly.'
}), 503
# Check if audio file is present
if 'audio_file' not in request.files:
return jsonify({'error': 'No audio file provided'}), 400
file = request.files['audio_file']
if file.filename == '':
return jsonify({'error': 'No file selected'}), 400
if not allowed_file(file.filename):
return jsonify({
'error': f'File type not allowed. Supported formats: {", ".join(ALLOWED_EXTENSIONS)}'
}), 400
# Get optional parameters
language = request.form.get('language', None)
task = request.form.get('task', 'transcribe')
if task not in ['transcribe', 'translate']:
return jsonify({'error': 'Task must be either "transcribe" or "translate"'}), 400
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file.filename.rsplit('.', 1)[1].lower()}") as tmp_file:
file.save(tmp_file.name)
temp_path = tmp_file.name
logger.info(f"Processing file: {file.filename}")
try:
# Transcribe with word-level timestamps
result = model.transcribe(
temp_path,
language=language,
task=task,
word_timestamps=True,
verbose=False
)
# Extract word-level data
word_segments = []
for segment in result.get("segments", []):
if "words" in segment:
for word_data in segment["words"]:
word_segments.append({
"word": word_data.get("word", "").strip(),
"start": word_data.get("start", 0),
"end": word_data.get("end", 0),
"start_formatted": format_timestamp(word_data.get("start", 0)),
"end_formatted": format_timestamp(word_data.get("end", 0)),
"confidence": word_data.get("probability", 0)
})
# Prepare response
response_data = {
"success": True,
"filename": secure_filename(file.filename),
"language": result.get("language", "unknown"),
"task": task,
"duration": result.get("segments", [{}])[-1].get("end", 0) if result.get("segments") else 0,
"text": result.get("text", ""),
"word_count": len(word_segments),
"segments": result.get("segments", []),
"words": word_segments,
"model_used": MODEL_SIZE,
"processing_time": None # You can add timing if needed
}
logger.info(f"Successfully transcribed {len(word_segments)} words from {file.filename}")
return jsonify(response_data)
except Exception as e:
logger.error(f"Transcription error: {str(e)}")
return jsonify({'error': f'Transcription failed: {str(e)}'}), 500
finally:
# Clean up temporary file
if os.path.exists(temp_path):
os.unlink(temp_path)
except Exception as e:
logger.error(f"API error: {str(e)}")
return jsonify({'error': f'Server error: {str(e)}'}), 500
@app.route('/models', methods=['GET'])
def available_models():
"""Get information about available Whisper models"""
models_info = {
"current_model": MODEL_SIZE if model_loaded else "none",
"model_loaded": model_loaded,
"available_models": {
"tiny": {"size": "~39 MB", "speed": "~32x", "accuracy": "lowest"},
"base": {"size": "~74 MB", "speed": "~16x", "accuracy": "low"},
"small": {"size": "~244 MB", "speed": "~6x", "accuracy": "medium"},
"medium": {"size": "~769 MB", "speed": "~2x", "accuracy": "high"},
"large": {"size": "~1550 MB", "speed": "~1x", "accuracy": "highest"}
},
"supported_languages": [
"en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl",
"ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro",
"da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy",
"sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu",
"is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km",
"sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo",
"uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg",
"as", "tt", "haw", "ln", "ha", "ba", "jw", "su"
],
"installation_help": {
"error": "Whisper model not loaded" if not model_loaded else None,
"install_command": "pip install openai-whisper torch torchaudio",
"uninstall_conflicts": "pip uninstall whisper (if you have conflicting whisper package)"
}
}
return jsonify(models_info)
@app.errorhandler(413)
def too_large(e):
return jsonify({'error': 'File too large. Maximum size is 100MB'}), 413
@app.errorhandler(404)
def not_found(e):
return jsonify({'error': 'Endpoint not found'}), 404
@app.errorhandler(500)
def internal_error(e):
return jsonify({'error': 'Internal server error'}), 500
if __name__ == '__main__':
if not model_loaded:
print(f"""
⚠️ WHISPER MODEL LOADING FAILED ⚠️
===================================
The Whisper model could not be loaded. Please check:
1. Install the correct package:
pip install openai-whisper torch torchaudio
2. If you have conflicts, uninstall the wrong whisper package:
pip uninstall whisper
pip install openai-whisper
3. Make sure you have sufficient disk space for the model
The server will start but transcription will not work until the model is loaded.
""")
else:
print(f"""
Whisper Transcription API Server
================================
Model: {MODEL_SIZE} ✅
Status: Ready
Endpoints:
- GET / : Health check
- POST /transcribe : Transcribe audio file
- GET /models : Available models info
Supported formats: {', '.join(ALLOWED_EXTENSIONS)}
Max file size: 100MB
""")
app.run(debug=True, host='0.0.0.0', port=7860) |