File size: 7,500 Bytes
6c3cd1d
 
b3cef24
 
ced86e4
6c3cd1d
 
 
b3cef24
6c3cd1d
 
 
b3cef24
6c3cd1d
ced86e4
b3cef24
6c3cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
b3cef24
6c3cd1d
 
 
 
 
 
b3cef24
6c3cd1d
 
 
 
 
 
 
 
 
b3cef24
6c3cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3cef24
6c3cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e9b550
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from flask import Flask, request, jsonify
import whisper
import tempfile
import os
from flask_cors import CORS
from werkzeug.utils import secure_filename
import logging
from datetime import datetime

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = Flask(__name__)
CORS(app)

# Configuration
app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024  # 100MB max file size
ALLOWED_EXTENSIONS = {'wav', 'mp3', 'mp4', 'mpeg', 'mpga', 'm4a', 'webm', 'flac'}

# Load Whisper model (you can change the model size: tiny, base, small, medium, large)
MODEL_SIZE = "base"  # Change this to your preferred model size
logger.info(f"Loading Whisper model: {MODEL_SIZE}")
model = whisper.load_model(MODEL_SIZE)
logger.info("Whisper model loaded successfully")

def allowed_file(filename):
    """Check if the file extension is allowed"""
    return '.' in filename and \
           filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def format_timestamp(seconds):
    """Convert seconds to HH:MM:SS.mmm format"""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = seconds % 60
    return f"{hours:02d}:{minutes:02d}:{secs:06.3f}"

@app.route('/', methods=['GET'])
def health_check():
    """Health check endpoint"""
    return jsonify({
        "status": "healthy",
        "message": "Whisper Transcription API is running",
        "model": MODEL_SIZE,
        "timestamp": datetime.now().isoformat()
    })

@app.route('/transcribe', methods=['POST'])
def transcribe_audio():
    """
    Transcribe audio file and return word-level timestamps
    
    Expected form data:
    - audio_file: The audio file to transcribe
    - language (optional): Language code (e.g., 'en', 'es', 'fr')
    - task (optional): 'transcribe' or 'translate' (default: transcribe)
    """
    try:
        # Check if audio file is present
        if 'audio_file' not in request.files:
            return jsonify({'error': 'No audio file provided'}), 400
        
        file = request.files['audio_file']
        
        if file.filename == '':
            return jsonify({'error': 'No file selected'}), 400
        
        if not allowed_file(file.filename):
            return jsonify({
                'error': f'File type not allowed. Supported formats: {", ".join(ALLOWED_EXTENSIONS)}'
            }), 400
        
        # Get optional parameters
        language = request.form.get('language', None)
        task = request.form.get('task', 'transcribe')
        
        if task not in ['transcribe', 'translate']:
            return jsonify({'error': 'Task must be either "transcribe" or "translate"'}), 400
        
        # Save uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file.filename.rsplit('.', 1)[1].lower()}") as tmp_file:
            file.save(tmp_file.name)
            temp_path = tmp_file.name
        
        logger.info(f"Processing file: {file.filename}")
        
        try:
            # Transcribe with word-level timestamps
            result = model.transcribe(
                temp_path,
                language=language,
                task=task,
                word_timestamps=True,
                verbose=False
            )
            
            # Extract word-level data
            word_segments = []
            for segment in result.get("segments", []):
                if "words" in segment:
                    for word_data in segment["words"]:
                        word_segments.append({
                            "word": word_data.get("word", "").strip(),
                            "start": word_data.get("start", 0),
                            "end": word_data.get("end", 0),
                            "start_formatted": format_timestamp(word_data.get("start", 0)),
                            "end_formatted": format_timestamp(word_data.get("end", 0)),
                            "confidence": word_data.get("probability", 0)
                        })
            
            # Prepare response
            response_data = {
                "success": True,
                "filename": secure_filename(file.filename),
                "language": result.get("language", "unknown"),
                "task": task,
                "duration": result.get("segments", [{}])[-1].get("end", 0) if result.get("segments") else 0,
                "text": result.get("text", ""),
                "word_count": len(word_segments),
                "segments": result.get("segments", []),
                "words": word_segments,
                "model_used": MODEL_SIZE,
                "processing_time": None  # You can add timing if needed
            }
            
            logger.info(f"Successfully transcribed {len(word_segments)} words from {file.filename}")
            return jsonify(response_data)
            
        except Exception as e:
            logger.error(f"Transcription error: {str(e)}")
            return jsonify({'error': f'Transcription failed: {str(e)}'}), 500
            
        finally:
            # Clean up temporary file
            if os.path.exists(temp_path):
                os.unlink(temp_path)
    
    except Exception as e:
        logger.error(f"API error: {str(e)}")
        return jsonify({'error': f'Server error: {str(e)}'}), 500

@app.route('/models', methods=['GET'])
def available_models():
    """Get information about available Whisper models"""
    models_info = {
        "current_model": MODEL_SIZE,
        "available_models": {
            "tiny": {"size": "~39 MB", "speed": "~32x", "accuracy": "lowest"},
            "base": {"size": "~74 MB", "speed": "~16x", "accuracy": "low"},
            "small": {"size": "~244 MB", "speed": "~6x", "accuracy": "medium"},
            "medium": {"size": "~769 MB", "speed": "~2x", "accuracy": "high"},
            "large": {"size": "~1550 MB", "speed": "~1x", "accuracy": "highest"}
        },
        "supported_languages": [
            "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", 
            "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", 
            "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", 
            "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", 
            "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", 
            "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", 
            "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", 
            "as", "tt", "haw", "ln", "ha", "ba", "jw", "su"
        ]
    }
    return jsonify(models_info)

@app.errorhandler(413)
def too_large(e):
    return jsonify({'error': 'File too large. Maximum size is 100MB'}), 413

@app.errorhandler(404)
def not_found(e):
    return jsonify({'error': 'Endpoint not found'}), 404

@app.errorhandler(500)
def internal_error(e):
    return jsonify({'error': 'Internal server error'}), 500

if __name__ == '__main__':
    print(f"""
    Whisper Transcription API Server
    ================================
    Model: {MODEL_SIZE}
    Endpoints:
    - GET  /           : Health check
    - POST /transcribe : Transcribe audio file
    - GET  /models     : Available models info
    
    Supported formats: {', '.join(ALLOWED_EXTENSIONS)}
    Max file size: 100MB
    """)
    
    app.run(debug=True, host='0.0.0.0', port=7860)