PicsTo3D / gradio_app.py
NicolasG2523's picture
Upload gradio_app.py
60ef967 verified
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import random
import shutil
import time
from glob import glob
from pathlib import Path
import gradio as gr
import torch
import trimesh
import uvicorn
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uuid
from hy3dgen.shapegen.utils import logger
MAX_SEED = 1e7
force_dark_theme = gr.themes.Base().set(
background_fill_primary='*neutral_950',
background_fill_secondary='*neutral_900',
block_background_fill='*neutral_800',
block_label_background_fill='*background_fill_secondary',
block_label_text_color='*neutral_200',
block_title_text_color='*neutral_200',
body_text_color='*neutral_100',
border_color_accent='*primary_600',
border_color_primary='*neutral_700',
button_cancel_text_color_hover='white',
button_primary_background_fill='*primary_600',
button_primary_background_fill_hover='*primary_700',
button_primary_border_color='*primary_600',
button_secondary_background_fill='*neutral_600',
button_secondary_background_fill_hover='*neutral_700',
button_secondary_border_color='*neutral_600',
button_secondary_border_color_hover='*neutral_500',
button_secondary_text_color='white',
checkbox_background_color='*neutral_800',
checkbox_border_color='*neutral_700',
checkbox_border_color_hover='*neutral_600',
code_background_fill='*neutral_800',
color_accent='*primary_700',
color_accent_soft='*neutral_700',
error_background_fill='*background_fill_primary',
error_border_color='#ef4444',
error_icon_color='#ef4444',
error_text_color='#fef2f2',
input_background_fill='*neutral_700',
input_border_color_focus='*neutral_700',
input_placeholder_color='*neutral_500',
link_text_color='*secondary_500',
link_text_color_active='*secondary_500',
link_text_color_hover='*secondary_400',
link_text_color_visited='*secondary_600',
shadow_spread='1px',
stat_background_fill='*primary_500',
table_border_color='*neutral_700',
table_even_background_fill='neutral_950',
table_odd_background_fill='*neutral_900'
)
if True:
import os
import spaces
import subprocess
import sys
import shlex
print(f"gradio version: {gr.__version__}")
print("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
print('install custom')
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
def export_mesh(mesh, save_folder, textured=False, type='glb'):
if textured:
path = os.path.join(save_folder, f'textured_mesh.{type}')
else:
path = os.path.join(save_folder, f'white_mesh.{type}')
if type not in ['glb', 'obj']:
mesh.export(path)
else:
mesh.export(path, include_normals=textured)
return path
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
# Remove first folder from path to make relative path
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'white_mesh.html')
offset = 50 if textured else 10
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
template_html = f.read()
with open(output_html_path, 'w', encoding='utf-8') as f:
template_html = template_html.replace('#height#', f'{height - offset}')
template_html = template_html.replace('#width#', f'{width}')
template_html = template_html.replace('#src#', f'{related_path}/')
f.write(template_html)
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
iframe_tag = f'<iframe src="https://nicolasg2523-picsto3d.hf.space/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>'
print(
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
<div style='height: {height}; width: 100%;'>
{iframe_tag}
</div>
"""
@spaces.GPU(duration=40)
def _gen_shape(
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
if MV_MODE:
if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None:
raise gr.Error("Please provide at least one view image.")
image = {}
if mv_image_front:
image['front'] = mv_image_front
if mv_image_back:
image['back'] = mv_image_back
if mv_image_left:
image['left'] = mv_image_left
if mv_image_right:
image['right'] = mv_image_right
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
save_folder = gen_save_folder()
stats = {
'model': {
'shapegen': f'{args.model_path}/{args.subfolder}',
'texgen': f'{args.texgen_model_path}',
},
'params': {
'steps': steps,
'guidance_scale': guidance_scale,
'seed': seed,
'octree_resolution': octree_resolution,
'check_box_rembg': check_box_rembg,
'num_chunks': num_chunks,
}
}
time_meta = {}
if image is None:
start_time = time.time()
try:
image = t2i_worker(caption)
except Exception as e:
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.")
time_meta['text2image'] = time.time() - start_time
# remove disk io to make responding faster, uncomment at your will.
# image.save(os.path.join(save_folder, 'input.png'))
if MV_MODE:
start_time = time.time()
for k, v in image.items():
if check_box_rembg or v.mode == "RGB":
img = rmbg_worker(v.convert('RGB'))
image[k] = img
time_meta['remove background'] = time.time() - start_time
else:
if check_box_rembg or image.mode == "RGB":
start_time = time.time()
image = rmbg_worker(image.convert('RGB'))
time_meta['remove background'] = time.time() - start_time
# remove disk io to make responding faster, uncomment at your will.
# image.save(os.path.join(save_folder, 'rembg.png'))
# image to white model
start_time = time.time()
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh'
)
time_meta['shape generation'] = time.time() - start_time
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time))
tmp_start = time.time()
mesh = export_to_trimesh(outputs)[0]
time_meta['export to trimesh'] = time.time() - tmp_start
stats['number_of_faces'] = mesh.faces.shape[0]
stats['number_of_vertices'] = mesh.vertices.shape[0]
stats['time'] = time_meta
main_image = image if not MV_MODE else image['front']
return mesh, main_image, save_folder, stats, seed
@spaces.GPU(duration=90)
def generation_all(
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
start_time_0 = time.time()
mesh, image, save_folder, stats, seed = _gen_shape(
mv_image_front=mv_image_front,
mv_image_back=mv_image_back,
mv_image_left=mv_image_left,
mv_image_right=mv_image_right,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
num_chunks=num_chunks,
randomize_seed=randomize_seed,
)
path = export_mesh(mesh, save_folder, textured=False)
# tmp_time = time.time()
# mesh = floater_remove_worker(mesh)
# mesh = degenerate_face_remove_worker(mesh)
# logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time))
# stats['time']['postprocessing'] = time.time() - tmp_time
tmp_time = time.time()
mesh = face_reduce_worker(mesh)
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['face reduction'] = time.time() - tmp_time
tmp_time = time.time()
textured_mesh = texgen_worker(mesh, image)
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['texture generation'] = time.time() - tmp_time
stats['time']['total'] = time.time() - start_time_0
textured_mesh.metadata['extras'] = stats
path_textured = export_mesh(textured_mesh, save_folder, textured=True)
model_viewer_html_textured = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
textured=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
return (
gr.update(value=path),
gr.update(value=path_textured),
model_viewer_html_textured,
stats,
seed,
)
@spaces.GPU(duration=40)
def shape_generation(
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
start_time_0 = time.time()
mesh, image, save_folder, stats, seed = _gen_shape(
mv_image_front=mv_image_front,
mv_image_back=mv_image_back,
mv_image_left=mv_image_left,
mv_image_right=mv_image_right,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
num_chunks=num_chunks,
randomize_seed=randomize_seed,
)
stats['time']['total'] = time.time() - start_time_0
mesh.metadata['extras'] = stats
path = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
if args.low_vram_mode:
torch.cuda.empty_cache()
return (
gr.update(value=path),
model_viewer_html,
stats,
seed,
)
def build_app():
title = 'Generación de modelo 3D basado en imágenes'
title_html = f"""
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px">
{title}
</div>
"""
custom_css = """
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) {
max-width: 1480px;
}
.mv-image button .wrap {
font-size: 10px;
}
.mv-image .icon-wrap {
width: 20px;
}
"""
#gr.themes.Base()
with gr.Blocks(theme=force_dark_theme, title='3DMarket-3D-2.0', analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=3):
with gr.Tabs(selected='tab_mv'):
with gr.Tab('Imágenes', id='tab_mv'):
with gr.Row():
mv_image_front = gr.Image(label='Frente', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
mv_image_back = gr.Image(label='Atrás', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
with gr.Row():
mv_image_left = gr.Image(label='Izquierda', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
mv_image_right = gr.Image(label='Derecha', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
with gr.Row():
btn = gr.Button(value='Generar modelo', variant='primary', min_width=100)
btn_all = gr.Button(value='Gen Textured Shape',
variant='primary',
visible=False,
min_width=100)
with gr.Group():
file_out = gr.File(label="File", visible=False)
file_out2 = gr.File(label="File", visible=False)
with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'):
with gr.Tab("Opciones", id='tab_options', visible=TURBO_MODE):
gen_mode = gr.Radio(label='Modo de Generación',
choices=['Turbo', 'Fast', 'Standard'], value='Turbo')
decode_mode = gr.Radio(label='Mode de decripción',
choices=['Low', 'Standard', 'High'],
value='Standard')
with gr.Tab('Advanced Options', id='tab_advanced_options', visible=False):
with gr.Row():
check_box_rembg = gr.Checkbox(value=True, label='Remove Background', min_width=100)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, min_width=100)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
with gr.Row():
num_steps = gr.Slider(maximum=100,
minimum=1,
value=5 if 'turbo' in args.subfolder else 30,
step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Row():
cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100)
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000,
label='Number of Chunks', min_width=100)
with gr.Tab("Exportar", id='tab_export'):
with gr.Row():
file_type = gr.Dropdown(label='Archivo', choices=SUPPORTED_FORMATS,
value='glb', min_width=100)
reduce_face = gr.Checkbox(label='Modelo Simpl.', value=False, min_width=100)
export_texture = gr.Checkbox(label='Include Texture', value=False,
visible=False, min_width=100)
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000,
label='Numero de frentes objetivo')
with gr.Row():
confirm_export = gr.Button(value="Transformar", min_width=100)
file_export = gr.DownloadButton(label="Descargar", variant='primary',
interactive=False, min_width=100)
with gr.Column(scale=9):
with gr.Tabs(selected='gen_mesh_panel') as tabs_output:
with gr.Tab('Modelo Generado', id='gen_mesh_panel'):
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Tab('Exporting Mesh', id='export_mesh_panel', visible=False):
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output', visible=False)
with gr.Tab('Mesh Statistic', id='stats_panel', visible=False):
stats = gr.Json({}, label='Mesh Stats')
btn.click(
shape_generation,
inputs=[
mv_image_front,
mv_image_back,
mv_image_left,
mv_image_right,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
num_chunks,
randomize_seed,
],
outputs=[file_out, html_gen_mesh, stats, seed]
).then(
lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=False)),
outputs=[export_texture, reduce_face, confirm_export, file_export],
).then(
lambda: gr.update(selected='gen_mesh_panel'),
outputs=[tabs_output],
)
btn_all.click(
generation_all,
inputs=[
mv_image_front,
mv_image_back,
mv_image_left,
mv_image_right,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
num_chunks,
randomize_seed,
],
outputs=[file_out, file_out2, html_gen_mesh, stats, seed]
).then(
lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True),
gr.update(interactive=False)),
outputs=[export_texture, reduce_face, confirm_export, file_export],
).then(
lambda: gr.update(selected='gen_mesh_panel'),
outputs=[tabs_output],
)
def on_gen_mode_change(value):
if value == 'Turbo':
return gr.update(value=5)
elif value == 'Fast':
return gr.update(value=10)
else:
return gr.update(value=30)
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps])
def on_decode_mode_change(value):
if value == 'Low':
return gr.update(value=196)
elif value == 'Standard':
return gr.update(value=256)
else:
return gr.update(value=384)
decode_mode.change(on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution])
def on_export_click(file_out, file_out2, file_type, reduce_face, export_texture, target_face_num):
if file_out is None:
raise gr.Error('Please generate a mesh first.')
print(f'exporting {file_out}')
print(f'reduce face to {target_face_num}')
if export_texture:
mesh = trimesh.load(file_out2)
save_folder = gen_save_folder()
path = export_mesh(mesh, save_folder, textured=True, type=file_type)
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=True)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
textured=True)
else:
mesh = trimesh.load(file_out)
mesh = floater_remove_worker(mesh)
mesh = degenerate_face_remove_worker(mesh)
if reduce_face:
mesh = face_reduce_worker(mesh, target_face_num)
save_folder = gen_save_folder()
path = export_mesh(mesh, save_folder, textured=False, type=file_type)
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
textured=False)
print(f'export to {path}')
return model_viewer_html, gr.update(value=path, interactive=True)
confirm_export.click(
lambda: gr.update(selected='export_mesh_panel'),
outputs=[tabs_output],
).then(
on_export_click,
inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num],
outputs=[html_export_mesh, file_export]
)
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mv')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mv-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache-path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
try:
port = int(args.port)
except ValueError:
print(f"Invalid port argument detected: {args.port} — using default 7860")
port = 7860
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
MV_MODE = 'mv' in args.model_path
TURBO_MODE = 'turbo' in args.subfolder
HTML_HEIGHT = 690 if MV_MODE else 650
HTML_WIDTH = 500
HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
<p style="color: #8d8d8d;">Bienvenido a 3D Market</p>
</div>
</div>
"""
INPUT_MESH_HTML = """
<div style='height: 490px; width: 100%; border-radius: 8px;
border-color: #e5e7eb; order-style: solid; border-width: 1px;'>
</div>
"""
SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl']
HAS_TEXTUREGEN = False
if not args.disable_tex:
try:
from hy3dgen.texgen import Hunyuan3DPaintPipeline
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path)
if args.low_vram_mode:
texgen_worker.enable_model_cpu_offload()
# Not help much, ignore for now.
# if args.compile:
# texgen_worker.models['delight_model'].pipeline.unet.compile()
# texgen_worker.models['delight_model'].pipeline.vae.compile()
# texgen_worker.models['multiview_model'].pipeline.unet.compile()
# texgen_worker.models['multiview_model'].pipeline.vae.compile()
HAS_TEXTUREGEN = True
except Exception as e:
print(e)
print("Failed to load texture generator.")
print('Please try to install requirements by following README.md')
HAS_TEXTUREGEN = False
HAS_T2I = True
if args.enable_t23d:
from hy3dgen.text2image import HunyuanDiTPipeline
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled')
HAS_T2I = True
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.shapegen.pipelines import export_to_trimesh
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path(SAVE_DIR).absolute()
static_dir.mkdir(parents=True, exist_ok=True)
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static")
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
demo = build_app()
app = gr.mount_gradio_app(app, demo, path="/")
uvicorn.run(app, host=args.host, port=args.port)