File size: 14,080 Bytes
b2c4ab7
c1fa46d
b2c4ab7
 
 
 
 
 
 
 
c4f9f48
c1fa46d
 
a7ffad5
b2c4ab7
 
6d45ca0
da460a1
 
c1fa46d
da460a1
6d45ca0
da460a1
e392e54
b2c4ab7
 
c1fa46d
6d45ca0
c1fa46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d45ca0
c1fa46d
 
e392e54
b2c4ab7
 
 
 
6d45ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c4ab7
 
 
a7ffad5
 
 
 
e392e54
b2c4ab7
 
120ea4f
 
6d45ca0
c1fa46d
 
 
 
b2c4ab7
 
 
 
 
 
 
c1fa46d
b2c4ab7
a7ffad5
 
 
 
 
 
e392e54
c1fa46d
6d45ca0
b2c4ab7
 
 
 
6d45ca0
 
 
a7ffad5
 
 
6d45ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7ffad5
 
b2c4ab7
 
 
e392e54
c1fa46d
6d45ca0
b2c4ab7
c1fa46d
 
 
 
 
 
 
 
 
 
b2c4ab7
 
c1fa46d
a7ffad5
e392e54
c1fa46d
6d45ca0
a7ffad5
c1fa46d
a7ffad5
 
c1fa46d
 
 
b2c4ab7
c1fa46d
b2c4ab7
 
a7ffad5
 
c1fa46d
 
 
 
 
 
 
c4f9f48
 
b2c4ab7
c4f9f48
b2c4ab7
a7ffad5
 
 
c1fa46d
b2c4ab7
e392e54
a7ffad5
 
c4f9f48
 
a7ffad5
c4f9f48
a7ffad5
c4f9f48
b2c4ab7
e392e54
c1fa46d
 
c4f9f48
a7ffad5
 
 
e392e54
6ac2cb8
e392e54
b2c4ab7
 
e392e54
b2c4ab7
a7ffad5
6ac2cb8
c1fa46d
6ac2cb8
a7ffad5
c1fa46d
b2c4ab7
 
a7ffad5
c4f9f48
a7ffad5
b2c4ab7
c1fa46d
 
 
b2c4ab7
e392e54
b2c4ab7
 
 
c1fa46d
b2c4ab7
 
 
 
 
a7ffad5
 
 
 
b2c4ab7
 
 
 
 
 
c1fa46d
b2c4ab7
 
c1fa46d
 
a7ffad5
6ac2cb8
a7ffad5
c1fa46d
c4f9f48
a7ffad5
c4f9f48
a7ffad5
6ac2cb8
a7ffad5
 
c4f9f48
a7ffad5
b2c4ab7
 
 
a7ffad5
e392e54
a7ffad5
 
c1fa46d
b2c4ab7
e392e54
a895c00
c1fa46d
 
6d45ca0
a895c00
6ac2cb8
b2c4ab7
 
6ac2cb8
a7ffad5
 
 
6ac2cb8
a7ffad5
 
6ac2cb8
c1fa46d
b2c4ab7
 
 
6ac2cb8
 
 
c4f9f48
a7ffad5
e392e54
 
6d45ca0
6ac2cb8
 
b2c4ab7
 
6ac2cb8
a7ffad5
 
b2c4ab7
6ac2cb8
b2c4ab7
 
c1fa46d
 
 
b2c4ab7
6ac2cb8
a7ffad5
b2c4ab7
6ac2cb8
b2c4ab7
 
e392e54
a7ffad5
b2c4ab7
 
6ac2cb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import gradio as gr
import torch
import numpy as np
import re
import soundfile as sf
import tempfile
import os
import nltk
from nltk.tokenize import sent_tokenize
import warnings
import time
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset

warnings.filterwarnings("ignore")

# Download required NLTK data including punkt_tab
try:
    nltk.data.find('tokenizers/punkt')
    nltk.data.find('tokenizers/punkt_tab')
except LookupError:
    nltk.download(['punkt', 'punkt_tab'], quiet=True)


class LongFormTTS:
    def __init__(self):
        print("πŸ”„ Loading TTS models...")
        try:
            # Load SpeechT5 - most reliable for HF Spaces
            print("Loading SpeechT5 TTS...")
            self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            # Load speaker embeddings dataset
            print("Loading speaker embeddings...")
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            # Store multiple speakers
            self.speakers = {
                f"Speaker {i+1} ({id})": embeddings_dataset[id]["xvector"] 
                for i, id in enumerate([7306, 7339, 7341, 7345, 7367, 7422])
            }
            self.speaker_ids = list(self.speakers.keys())
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
            self.model = self.model.to(self.device)
            self.vocoder = self.vocoder.to(self.device)
            print("βœ… SpeechT5 loaded successfully!")
        except Exception as e:
            print(f"❌ Failed to load SpeechT5: {e}")
            raise Exception(f"TTS model loading failed: {e}")

    def preprocess_text(self, text):
        """Clean and prepare text for TTS"""
        text = re.sub(r'\s+', ' ', text.strip())
        abbreviations = {
            'Dr.': 'Doctor',
            'Mr.': 'Mister',
            'Mrs.': 'Missus',
            'Ms.': 'Miss',
            'Prof.': 'Professor',
            'etc.': 'etcetera',
            'vs.': 'versus',
            'e.g.': 'for example',
            'i.e.': 'that is',
            'St.': 'Street',
            'Ave.': 'Avenue',
            'Blvd.': 'Boulevard',
            'Inc.': 'Incorporated',
            'Corp.': 'Corporation',
            'Ltd.': 'Limited',
            'U.S.': 'United States',
            'U.K.': 'United Kingdom',
            'Ph.D.': 'PhD',
            'M.D.': 'MD',
        }
        for abbr, full in abbreviations.items():
            text = text.replace(abbr, full)
        text = re.sub(r'\b(\d{1,4})\b', lambda m: self.number_to_words(int(m.group())), text)
        text = re.sub(r'\b(1[0-9]{3}|20[0-9]{2}|2100)\b', lambda m: m.group(), text)
        text = re.sub(r'[^\w\s\.,!?;:\-\(\)\'"]', ' ', text)
        return text.strip()

    def number_to_words(self, num):
        ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
        teens = ["ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
                 "sixteen", "seventeen", "eighteen", "nineteen"]
        tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
        if num == 0:
            return "zero"
        if num > 9999:
            return str(num)
        if num < 10:
            return ones[num]
        elif num < 20:
            return teens[num - 10]
        elif num < 100:
            return tens[num // 10] + ("" if num % 10 == 0 else " " + ones[num % 10])
        elif num < 1000:
            return ones[num // 100] + " hundred" + (" " + self.number_to_words(num % 100)).strip()
        else:
            thousands = num // 1000
            remainder = num % 1000
            result = self.number_to_words(thousands) + " thousand"
            if remainder > 0:
                result += " " + self.number_to_words(remainder)
            return result

    def chunk_text(self, text, max_length=400):
        """Split text into manageable chunks"""
        sentences = sent_tokenize(text)
        chunks = []
        current_chunk = ""
        for sentence in sentences:
            sentence = sentence.strip()
            if not sentence:
                continue
            if len(current_chunk + " " + sentence) > max_length:
                if current_chunk:
                    chunks.append(current_chunk.strip())
                if len(sentence) > max_length:
                    words = sentence.split()
                    temp_chunk = ""
                    for word in words:
                        if len(temp_chunk + " " + word) > max_length:
                            if temp_chunk:
                                chunks.append(temp_chunk.strip())
                                temp_chunk = word
                            else:
                                chunks.append(word)
                        else:
                            temp_chunk = temp_chunk + " " + word if temp_chunk else word
                    current_chunk = temp_chunk
                else:
                    current_chunk = sentence
            else:
                current_chunk = current_chunk + " " + sentence if current_chunk else sentence
        if current_chunk:
            chunks.append(current_chunk.strip())
        return [chunk for chunk in chunks if chunk.strip()]

    def generate_speech_chunk(self, text_chunk, speaker_embedding):
        """Generate speech for a single chunk"""
        try:
            inputs = self.processor(text=text_chunk, return_tensors="pt").to(self.device)
            with torch.no_grad():
                speech = self.model.generate_speech(
                    inputs["input_ids"], 
                    torch.tensor(speaker_embedding).unsqueeze(0).to(self.device), 
                    vocoder=self.vocoder
                )
            if isinstance(speech, torch.Tensor):
                speech = speech.cpu().numpy()
            return speech
        except Exception as e:
            print(f"Error generating speech for chunk: {e}")
            print(f"Chunk text: {text_chunk}")
            return None

    def generate_long_speech(self, text, speaker_id=None, progress_callback=None):
        """Generate speech for long text"""
        processed_text = self.preprocess_text(text)
        print(f"Original length: {len(text)}, Processed length: {len(processed_text)}")
        chunks = self.chunk_text(processed_text)
        print(f"Split into {len(chunks)} chunks")
        if not chunks:
            return None, None
        # Generate speech for each chunk
        audio_segments = []
        sample_rate = 16000
        for i, chunk in enumerate(chunks):
            if progress_callback:
                progress_callback(f"Processing chunk {i+1}/{len(chunks)}: {chunk[:40]}{'...' if len(chunk) > 40 else ''}")
            print(f"Processing chunk {i+1}: {chunk}")
            audio_chunk = self.generate_speech_chunk(chunk, self.speakers[speaker_id or self.speaker_ids[0]])
            if audio_chunk is not None and len(audio_chunk) > 0:
                if len(audio_chunk.shape) > 1:
                    audio_chunk = np.mean(audio_chunk, axis=0)
                audio_segments.append(audio_chunk)
                pause_samples = int(0.4 * sample_rate)
                silence = np.zeros(pause_samples)
                audio_segments.append(silence)
            time.sleep(0.1)
        if not audio_segments:
            return None, None
        final_audio = np.concatenate(audio_segments)
        max_val = np.max(np.abs(final_audio))
        if max_val > 0:
            final_audio = final_audio / max_val * 0.95
        return final_audio, sample_rate


# Global TTS system
print("πŸš€ Initializing TTS system...")
try:
    tts_system = LongFormTTS()
    print("βœ… TTS system ready!")
except Exception as e:
    print(f"❌ TTS initialization failed: {e}")
    tts_system = None


def text_to_speech_interface(text, speaker="Speaker 1 (7306)", progress=gr.Progress()):
    """Main Gradio interface function"""
    if tts_system is None:
        return None, "❌ TTS system is not available. Please check the logs."
    if not text or not text.strip():
        return None, "⚠️ Please enter some text to convert to speech."
    if len(text) > 50000:
        return None, "⚠️ Text is too long. Please keep it under 50,000 characters."

    def progress_callback(message):
        progress(0.5, desc=message)

    try:
        progress(0.1, desc="πŸ”„ Starting text-to-speech conversion...")
        audio, sample_rate = tts_system.generate_long_speech(text, speaker, progress_callback)
        if audio is None or len(audio) == 0:
            return None, "❌ Failed to generate audio."
        progress(0.9, desc="πŸ’Ύ Saving audio file...")
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            sf.write(tmp_file.name, audio, sample_rate)
            audio_path = tmp_file.name
        progress(1.0, desc="βœ… Complete!")
        duration = len(audio) / sample_rate
        return audio_path, f"βœ… Generated {duration:.1f} seconds of audio successfully!"
    except Exception as e:
        error_msg = f"❌ Error: {str(e)}"
        print(f"TTS Error: {e}")
        return None, error_msg


# Create Gradio interface
def create_interface():
    with gr.Blocks(
        title="🎀 Long-Form Text-to-Speech",
        theme=gr.themes.Soft(),
        css="""
        .main-header {
            text-align: center;
            margin-bottom: 2rem;
            background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            background-clip: text;
        }
        """
    ) as demo:
        gr.HTML("""
        <div class="main-header">
            <h1>🎀 Long-Form Text-to-Speech Generator</h1>
            <p style="color: #666; font-size: 1.1em;">Transform any text into natural human-like speech using advanced AI</p>
        </div>
        """)
        # System status
        if tts_system:
            gr.HTML("""
            <div style="padding: 1rem; border-radius: 10px; margin: 1rem 0; border-left: 4px solid #28a745; background: #f8f9fa;">
                <h4>🟒 System Ready</h4>
                <p>Using <strong>Microsoft SpeechT5</strong> - High quality neural text-to-speech</p>
            </div>
            """)
        else:
            gr.HTML("""
            <div style="padding: 1rem; border-radius: 10px; margin: 1rem 0; border-left: 4px solid #dc3545; background: #f8d7da;">
                <h4>πŸ”΄ System Error</h4>
                <p>TTS system failed to initialize. Please refresh the page.</p>
            </div>
            """)
        with gr.Row():
            with gr.Column(scale=2):
                text_input = gr.Textbox(
                    label="πŸ“ Enter Your Text",
                    placeholder="Type or paste your text here... (Max 50,000 characters)",
                    lines=10,
                    max_lines=20,
                    info="Supports any length text with automatic chunking for optimal quality"
                )
                char_count = gr.HTML("<span style='color: #666;'>Character count: 0 / 50,000</span>")
                speaker_dropdown = gr.Dropdown(
                    choices=tts_system.speaker_ids if tts_system else [],
                    value=tts_system.speaker_ids[0] if tts_system and tts_system.speaker_ids else None,
                    label="πŸ—£οΈ Choose Voice"
                )
                generate_btn = gr.Button("🎯 Generate Speech", variant="primary", size="lg", scale=1)
            with gr.Column(scale=1):
                gr.HTML("""
                <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1.5rem; border-radius: 15px; margin: 1rem 0; box-shadow: 0 4px 15px rgba(0,0,0,0.1);">
                    <h3>✨ Key Features</h3>
                    <ul style="margin: 0; padding-left: 1.2em;">
                        <li>πŸš€ Handles long texts</li>
                        <li>🎭 Multiple human voices</li>
                        <li>⚑ Smart text processing</li>
                        <li>πŸ”§ Auto chunking</li>
                        <li>🎡 Natural-sounding speech</li>
                        <li>πŸ”Š MP3 audio output</li>
                    </ul>
                </div>
                """)
        status_output = gr.Textbox(label="πŸ“Š Status", interactive=False, value="Ready to generate speech! Enter some text above.")
        audio_output = gr.Audio(label="πŸ”Š Generated Speech", type="filepath", show_download_button=True)

        def update_char_count(text):
            count = len(text) if text else 0
            color = "#28a745" if count <= 50000 else "#dc3545"
            return f'<span style="color: {color};">Character count: {count:,} / 50,000</span>'

        text_input.change(fn=update_char_count, inputs=[text_input], outputs=[char_count])

        generate_btn.click(
            fn=text_to_speech_interface,
            inputs=[text_input, speaker_dropdown],
            outputs=[audio_output, status_output],
            show_progress=True
        )

        gr.Examples(
            examples=[
                ["Hello! Welcome to our advanced text-to-speech system.", "Speaker 1 (7306)"],
                ["The quick brown fox jumps over the lazy dog.", "Speaker 2 (7339)"],
                ["Artificial intelligence has revolutionized many aspects of our lives.", "Speaker 3 (7341)"],
            ],
            inputs=[text_input, speaker_dropdown],
            label="πŸ“š Try These Examples"
        )

    return demo


# Launch the application
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)