Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
import os
|
3 |
import subprocess
|
4 |
import sys
|
@@ -7,7 +7,6 @@ import pkg_resources
|
|
7 |
|
8 |
def install_package(package, version=None):
|
9 |
package_spec = f"{package}=={version}" if version else package
|
10 |
-
print(f"Installing {package_spec}...")
|
11 |
try:
|
12 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
|
13 |
except subprocess.CalledProcessError as e:
|
@@ -20,28 +19,18 @@ def ensure_package(package, version=None):
|
|
20 |
pkg_resources.require(f"{package}=={version}")
|
21 |
else:
|
22 |
importlib.import_module(package)
|
23 |
-
|
24 |
-
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
|
25 |
-
print(f"Package requirement failed: {e}")
|
26 |
install_package(package, version)
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
ensure_package(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Install core dependencies
|
38 |
-
for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
|
39 |
-
ensure_package(pkg)
|
40 |
-
|
41 |
-
# Install deepface last after all dependencies are set up
|
42 |
-
ensure_package("deepface")
|
43 |
-
|
44 |
-
# Now import the required modules
|
45 |
import gradio as gr
|
46 |
import json
|
47 |
import cv2
|
@@ -51,125 +40,71 @@ import tempfile
|
|
51 |
import pandas as pd
|
52 |
import shutil
|
53 |
import matplotlib.pyplot as plt
|
54 |
-
|
55 |
-
# Import DeepFace after ensuring dependencies are properly installed
|
56 |
from deepface import DeepFace
|
57 |
|
|
|
58 |
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
59 |
temp_dir = tempfile.mkdtemp()
|
60 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
61 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
else:
|
66 |
-
img1.save(img1_path)
|
67 |
-
|
68 |
-
if isinstance(img2, np.ndarray):
|
69 |
-
Image.fromarray(img2).save(img2_path)
|
70 |
-
else:
|
71 |
-
img2.save(img2_path)
|
72 |
|
73 |
try:
|
74 |
-
result = DeepFace.verify(
|
75 |
-
img1_path=img1_path,
|
76 |
-
img2_path=img2_path,
|
77 |
-
model_name=model,
|
78 |
-
distance_metric="cosine",
|
79 |
-
threshold=threshold
|
80 |
-
)
|
81 |
-
|
82 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
ax[1].imshow(img2_display)
|
94 |
-
ax[1].set_title("Image 2")
|
95 |
-
ax[1].axis("off")
|
96 |
-
|
97 |
-
verification_result = "✅ FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
|
98 |
-
confidence = round((1 - result["distance"]) * 100, 2)
|
99 |
-
|
100 |
-
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
|
101 |
-
fontsize=16, fontweight='bold',
|
102 |
-
color='green' if result["verified"] else 'red')
|
103 |
-
|
104 |
plt.tight_layout()
|
105 |
|
106 |
-
|
107 |
-
os.remove(img2_path)
|
108 |
-
os.rmdir(temp_dir)
|
109 |
-
|
110 |
return fig, json.dumps(result, indent=2)
|
111 |
-
|
112 |
except Exception as e:
|
113 |
-
|
114 |
-
|
115 |
-
if os.path.exists(img2_path):
|
116 |
-
os.remove(img2_path)
|
117 |
-
if os.path.exists(temp_dir):
|
118 |
-
os.rmdir(temp_dir)
|
119 |
-
|
120 |
-
error_msg = f"Error: {str(e)}"
|
121 |
-
if "No face detected" in str(e):
|
122 |
-
error_msg = "No face detected in one or both images. Please try different images."
|
123 |
-
|
124 |
-
return None, error_msg
|
125 |
|
126 |
-
|
|
|
127 |
temp_dir = tempfile.mkdtemp()
|
128 |
query_path = os.path.join(temp_dir, "query.jpg")
|
129 |
-
|
130 |
-
if isinstance(query_img, np.ndarray):
|
131 |
-
Image.fromarray(query_img).save(query_path)
|
132 |
-
else:
|
133 |
-
query_img.save(query_path)
|
134 |
-
|
135 |
-
if isinstance(db_folder, str):
|
136 |
-
db_path = db_folder
|
137 |
-
else:
|
138 |
-
db_path = os.path.join(temp_dir, "db")
|
139 |
-
os.makedirs(db_path, exist_ok=True)
|
140 |
-
|
141 |
-
for i, file in enumerate(db_folder):
|
142 |
-
file_ext = os.path.splitext(file.name)[1]
|
143 |
-
shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))
|
144 |
|
145 |
try:
|
|
|
|
|
|
|
146 |
dfs = DeepFace.find(
|
147 |
img_path=query_path,
|
148 |
-
db_path=
|
149 |
model_name=model,
|
150 |
distance_metric="cosine",
|
151 |
threshold=threshold
|
152 |
)
|
153 |
|
154 |
if isinstance(dfs, list):
|
155 |
-
if
|
156 |
-
return None, "No matching faces found in the database."
|
157 |
-
df = dfs[0]
|
158 |
else:
|
159 |
df = dfs
|
160 |
|
161 |
if df.empty:
|
162 |
-
return None, "No matching faces found
|
163 |
|
164 |
df = df.sort_values(by=["distance"])
|
165 |
-
|
166 |
num_matches = min(4, len(df))
|
167 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
168 |
|
169 |
-
query_display = cv2.imread(query_path)
|
170 |
-
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
|
171 |
axes[0].imshow(query_display)
|
172 |
-
axes[0].set_title("Query
|
173 |
axes[0].axis("off")
|
174 |
|
175 |
for i in range(num_matches):
|
@@ -177,235 +112,95 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
177 |
distance = df.iloc[i]["distance"]
|
178 |
confidence = round((1 - distance) * 100, 2)
|
179 |
|
180 |
-
match_img = cv2.imread(match_path)
|
181 |
-
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
|
182 |
-
|
183 |
axes[i+1].imshow(match_img)
|
184 |
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
|
185 |
axes[i+1].axis("off")
|
186 |
|
187 |
-
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
188 |
plt.tight_layout()
|
189 |
|
190 |
-
|
191 |
-
results["confidence"]
|
192 |
-
results["confidence"] = results["confidence"].round(2)
|
193 |
-
results = results.rename(columns={"identity": "Image Path"})
|
194 |
-
|
195 |
-
os.remove(query_path)
|
196 |
-
if not isinstance(db_folder, str):
|
197 |
-
shutil.rmtree(db_path)
|
198 |
-
|
199 |
-
return fig, results.to_dict('records')
|
200 |
|
|
|
|
|
201 |
except Exception as e:
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
error_msg = f"Error: {str(e)}"
|
206 |
-
if "No face detected" in str(e):
|
207 |
-
error_msg = "No face detected in the query image. Please try a different image."
|
208 |
-
|
209 |
-
return None, error_msg
|
210 |
|
|
|
211 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
212 |
temp_dir = tempfile.mkdtemp()
|
213 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
214 |
-
|
215 |
-
if isinstance(img, np.ndarray):
|
216 |
-
Image.fromarray(img).save(img_path)
|
217 |
-
else:
|
218 |
-
img.save(img_path)
|
219 |
|
220 |
try:
|
221 |
-
results = DeepFace.analyze(
|
222 |
-
|
223 |
-
actions=actions,
|
224 |
-
enforce_detection=True,
|
225 |
-
detector_backend='opencv'
|
226 |
-
)
|
227 |
-
|
228 |
-
if isinstance(results, list):
|
229 |
-
num_faces = len(results)
|
230 |
-
else:
|
231 |
-
num_faces = 1
|
232 |
-
results = [results]
|
233 |
|
234 |
fig = plt.figure(figsize=(14, 7))
|
235 |
-
|
236 |
-
img_display = cv2.imread(img_path)
|
237 |
-
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
|
238 |
-
|
239 |
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
240 |
-
main_ax.imshow(
|
241 |
-
main_ax.set_title(f"
|
242 |
-
main_ax.axis(
|
243 |
-
|
244 |
-
for i,
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
gender_conf = 'N/A'
|
254 |
-
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
255 |
-
for g, conf in face_result['gender'].items():
|
256 |
-
if g.lower() == gender.lower():
|
257 |
-
gender_conf = f"{conf:.1f}%"
|
258 |
-
break
|
259 |
-
|
260 |
-
race_conf = 'N/A'
|
261 |
-
if 'race' in face_result and isinstance(face_result['race'], dict):
|
262 |
-
for r, conf in face_result['race'].items():
|
263 |
-
if r.lower() == race.lower():
|
264 |
-
race_conf = f"{conf:.1f}%"
|
265 |
-
break
|
266 |
-
|
267 |
-
emotion_conf = 'N/A'
|
268 |
-
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
269 |
-
for e, conf in face_result['emotion'].items():
|
270 |
-
if e.lower() == emotion.lower():
|
271 |
-
emotion_conf = f"{conf:.1f}%"
|
272 |
-
break
|
273 |
-
|
274 |
-
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
275 |
-
|
276 |
-
text = (
|
277 |
-
f"Face #{i+1}\n\n"
|
278 |
-
f"Age: {age}\n\n"
|
279 |
-
f"Gender: {gender} ({gender_conf})\n\n"
|
280 |
-
f"Race: {race} ({race_conf})\n\n"
|
281 |
-
f"Emotion: {emotion} ({emotion_conf})"
|
282 |
-
)
|
283 |
-
|
284 |
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
285 |
-
ax.axis(
|
286 |
|
287 |
plt.tight_layout()
|
|
|
288 |
|
289 |
-
|
290 |
-
os.rmdir(temp_dir)
|
291 |
-
|
292 |
-
formatted_results = []
|
293 |
-
for i, res in enumerate(results[:8]):
|
294 |
-
face_data = {
|
295 |
-
"face_number": i+1,
|
296 |
-
"age": res.get("age", "N/A"),
|
297 |
-
"gender": {
|
298 |
-
"dominant": res.get("dominant_gender", "N/A"),
|
299 |
-
"confidence": res.get("gender", {})
|
300 |
-
},
|
301 |
-
"race": {
|
302 |
-
"dominant": res.get("dominant_race", "N/A"),
|
303 |
-
"confidence": res.get("race", {})
|
304 |
-
},
|
305 |
-
"emotion": {
|
306 |
-
"dominant": res.get("dominant_emotion", "N/A"),
|
307 |
-
"confidence": res.get("emotion", {})
|
308 |
-
}
|
309 |
-
}
|
310 |
-
formatted_results.append(face_data)
|
311 |
-
|
312 |
-
return fig, formatted_results
|
313 |
-
|
314 |
except Exception as e:
|
315 |
-
|
316 |
-
|
317 |
-
if os.path.exists(temp_dir):
|
318 |
-
os.rmdir(temp_dir)
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
error_msg = "No face detected in the image. Please try a different image."
|
323 |
-
|
324 |
-
return None, error_msg
|
325 |
-
|
326 |
-
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
327 |
gr.Markdown("""
|
328 |
-
#
|
329 |
-
|
330 |
-
- **
|
331 |
-
- **
|
332 |
-
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
|
333 |
""")
|
334 |
|
335 |
with gr.Tabs():
|
336 |
with gr.TabItem("Verify Faces"):
|
337 |
with gr.Row():
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
value="VGG-Face",
|
347 |
-
label="Face Recognition Model"
|
348 |
-
)
|
349 |
-
|
350 |
-
verify_button = gr.Button("Verify Faces", variant="primary")
|
351 |
-
|
352 |
-
verify_result_plot = gr.Plot(label="Verification Result")
|
353 |
-
verify_json = gr.JSON(label="Technical Details")
|
354 |
-
|
355 |
-
verify_button.click(
|
356 |
-
verify_faces,
|
357 |
-
inputs=[img1_input, img2_input, verify_threshold, verify_model],
|
358 |
-
outputs=[verify_result_plot, verify_json]
|
359 |
-
)
|
360 |
|
361 |
with gr.TabItem("Find Faces"):
|
362 |
-
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
|
363 |
-
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
|
364 |
-
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
|
365 |
-
|
366 |
with gr.Row():
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
find_button = gr.Button("Find Matching Faces", variant="primary")
|
376 |
-
|
377 |
-
find_result_plot = gr.Plot(label="Search Results")
|
378 |
-
find_results_table = gr.JSON(label="Detailed Results")
|
379 |
-
|
380 |
-
find_button.click(
|
381 |
-
find_faces,
|
382 |
-
inputs=[query_img, db_path_input, find_threshold, find_model],
|
383 |
-
outputs=[find_result_plot, find_results_table]
|
384 |
-
)
|
385 |
-
|
386 |
-
db_files_input.change(
|
387 |
-
lambda x: "",
|
388 |
-
inputs=db_files_input,
|
389 |
-
outputs=db_path_input
|
390 |
-
)
|
391 |
|
392 |
with gr.TabItem("Analyze Face"):
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
)
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
analyze_result_plot = gr.Plot(label="Analysis Results")
|
403 |
-
analyze_json = gr.JSON(label="Detailed Analysis")
|
404 |
-
|
405 |
-
analyze_button.click(
|
406 |
-
analyze_face,
|
407 |
-
inputs=[analyze_img, actions_checkboxes],
|
408 |
-
outputs=[analyze_result_plot, analyze_json]
|
409 |
-
)
|
410 |
-
|
411 |
-
demo.launch()
|
|
|
1 |
+
# Required package setup
|
2 |
import os
|
3 |
import subprocess
|
4 |
import sys
|
|
|
7 |
|
8 |
def install_package(package, version=None):
|
9 |
package_spec = f"{package}=={version}" if version else package
|
|
|
10 |
try:
|
11 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
|
12 |
except subprocess.CalledProcessError as e:
|
|
|
19 |
pkg_resources.require(f"{package}=={version}")
|
20 |
else:
|
21 |
importlib.import_module(package)
|
22 |
+
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound):
|
|
|
|
|
23 |
install_package(package, version)
|
24 |
|
25 |
+
# Install packages
|
26 |
+
ensure_package("numpy", "1.23.5")
|
27 |
+
ensure_package("protobuf", "3.20.3")
|
28 |
+
ensure_package("tensorflow", "2.10.0")
|
29 |
+
for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
|
30 |
+
ensure_package(pkg)
|
31 |
+
ensure_package("deepface")
|
32 |
+
|
33 |
+
# Imports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
import gradio as gr
|
35 |
import json
|
36 |
import cv2
|
|
|
40 |
import pandas as pd
|
41 |
import shutil
|
42 |
import matplotlib.pyplot as plt
|
|
|
|
|
43 |
from deepface import DeepFace
|
44 |
|
45 |
+
# --- VERIFY FACES ---
|
46 |
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
47 |
temp_dir = tempfile.mkdtemp()
|
48 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
49 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
50 |
|
51 |
+
Image.fromarray(img1).save(img1_path)
|
52 |
+
Image.fromarray(img2).save(img2_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
try:
|
55 |
+
result = DeepFace.verify(img1_path, img2_path, model_name=model, distance_metric="cosine", threshold=threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
57 |
+
ax[0].imshow(cv2.cvtColor(cv2.imread(img1_path), cv2.COLOR_BGR2RGB))
|
58 |
+
ax[0].set_title("Image 1"); ax[0].axis("off")
|
59 |
+
ax[1].imshow(cv2.cvtColor(cv2.imread(img2_path), cv2.COLOR_BGR2RGB))
|
60 |
+
ax[1].set_title("Image 2"); ax[1].axis("off")
|
61 |
+
|
62 |
+
verified = result["verified"]
|
63 |
+
conf = round((1 - result["distance"]) * 100, 2)
|
64 |
+
plt.suptitle(f"{'✅ MATCHED' if verified else '❌ NOT MATCHED'}\nConfidence: {conf}%",
|
65 |
+
fontsize=16, fontweight='bold',
|
66 |
+
color='green' if verified else 'red')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
plt.tight_layout()
|
68 |
|
69 |
+
shutil.rmtree(temp_dir)
|
|
|
|
|
|
|
70 |
return fig, json.dumps(result, indent=2)
|
|
|
71 |
except Exception as e:
|
72 |
+
shutil.rmtree(temp_dir)
|
73 |
+
return None, str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# --- FIND FACES ---
|
76 |
+
def find_faces(query_img, db_folder_path, threshold=0.70, model="VGG-Face"):
|
77 |
temp_dir = tempfile.mkdtemp()
|
78 |
query_path = os.path.join(temp_dir, "query.jpg")
|
79 |
+
Image.fromarray(query_img).save(query_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
try:
|
82 |
+
if not os.path.isdir(db_folder_path):
|
83 |
+
return None, "Invalid database folder path. Please provide a valid local path."
|
84 |
+
|
85 |
dfs = DeepFace.find(
|
86 |
img_path=query_path,
|
87 |
+
db_path=db_folder_path,
|
88 |
model_name=model,
|
89 |
distance_metric="cosine",
|
90 |
threshold=threshold
|
91 |
)
|
92 |
|
93 |
if isinstance(dfs, list):
|
94 |
+
df = dfs[0] if dfs else pd.DataFrame()
|
|
|
|
|
95 |
else:
|
96 |
df = dfs
|
97 |
|
98 |
if df.empty:
|
99 |
+
return None, "No matching faces found."
|
100 |
|
101 |
df = df.sort_values(by=["distance"])
|
|
|
102 |
num_matches = min(4, len(df))
|
103 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
104 |
|
105 |
+
query_display = cv2.cvtColor(cv2.imread(query_path), cv2.COLOR_BGR2RGB)
|
|
|
106 |
axes[0].imshow(query_display)
|
107 |
+
axes[0].set_title("Query")
|
108 |
axes[0].axis("off")
|
109 |
|
110 |
for i in range(num_matches):
|
|
|
112 |
distance = df.iloc[i]["distance"]
|
113 |
confidence = round((1 - distance) * 100, 2)
|
114 |
|
115 |
+
match_img = cv2.cvtColor(cv2.imread(match_path), cv2.COLOR_BGR2RGB)
|
|
|
|
|
116 |
axes[i+1].imshow(match_img)
|
117 |
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
|
118 |
axes[i+1].axis("off")
|
119 |
|
|
|
120 |
plt.tight_layout()
|
121 |
|
122 |
+
df["confidence"] = ((1 - df["distance"]) * 100).round(2)
|
123 |
+
results = df[["identity", "distance", "confidence"]].to_dict("records")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
shutil.rmtree(temp_dir)
|
126 |
+
return fig, results
|
127 |
except Exception as e:
|
128 |
+
shutil.rmtree(temp_dir)
|
129 |
+
return None, str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
# --- ANALYZE FACE ---
|
132 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
133 |
temp_dir = tempfile.mkdtemp()
|
134 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
135 |
+
Image.fromarray(img).save(img_path)
|
|
|
|
|
|
|
|
|
136 |
|
137 |
try:
|
138 |
+
results = DeepFace.analyze(img_path=img_path, actions=actions, enforce_detection=True)
|
139 |
+
results = results if isinstance(results, list) else [results]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
fig = plt.figure(figsize=(14, 7))
|
|
|
|
|
|
|
|
|
142 |
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
143 |
+
main_ax.imshow(cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB))
|
144 |
+
main_ax.set_title(f"Detected {len(results)} Face(s)")
|
145 |
+
main_ax.axis("off")
|
146 |
+
|
147 |
+
for i, res in enumerate(results[:4]):
|
148 |
+
age = res.get("age", "N/A")
|
149 |
+
gender = res.get("dominant_gender", "N/A")
|
150 |
+
race = res.get("dominant_race", "N/A")
|
151 |
+
emotion = res.get("dominant_emotion", "N/A")
|
152 |
+
|
153 |
+
text = f"Face #{i+1}\n\nAge: {age}\nGender: {gender}\nRace: {race}\nEmotion: {emotion}"
|
154 |
+
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + i % 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
156 |
+
ax.axis("off")
|
157 |
|
158 |
plt.tight_layout()
|
159 |
+
shutil.rmtree(temp_dir)
|
160 |
|
161 |
+
return fig, results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
except Exception as e:
|
163 |
+
shutil.rmtree(temp_dir)
|
164 |
+
return None, str(e)
|
|
|
|
|
165 |
|
166 |
+
# --- GRADIO INTERFACE ---
|
167 |
+
with gr.Blocks(title="Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
|
|
|
|
168 |
gr.Markdown("""
|
169 |
+
# 👤 Face Recognition Tool
|
170 |
+
- **Verify Faces**: Are two images of the same person?
|
171 |
+
- **Find Faces**: Search for matches from a folder.
|
172 |
+
- **Analyze Face**: Detect age, gender, race, emotion.
|
|
|
173 |
""")
|
174 |
|
175 |
with gr.Tabs():
|
176 |
with gr.TabItem("Verify Faces"):
|
177 |
with gr.Row():
|
178 |
+
img1 = gr.Image(label="Image 1", type="numpy")
|
179 |
+
img2 = gr.Image(label="Image 2", type="numpy")
|
180 |
+
threshold = gr.Slider(0.1, 0.9, value=0.7, step=0.05, label="Threshold")
|
181 |
+
model = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Model")
|
182 |
+
btn = gr.Button("Verify")
|
183 |
+
out_plot = gr.Plot()
|
184 |
+
out_json = gr.JSON()
|
185 |
+
btn.click(verify_faces, inputs=[img1, img2, threshold, model], outputs=[out_plot, out_json])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
with gr.TabItem("Find Faces"):
|
|
|
|
|
|
|
|
|
188 |
with gr.Row():
|
189 |
+
query_img = gr.Image(label="Query Face", type="numpy")
|
190 |
+
db_path = gr.Textbox(label="Folder Path for Face Database")
|
191 |
+
threshold_find = gr.Slider(0.1, 0.9, value=0.7, step=0.05, label="Threshold")
|
192 |
+
model_find = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Model")
|
193 |
+
btn_find = gr.Button("Find Matches")
|
194 |
+
out_plot_find = gr.Plot()
|
195 |
+
out_json_find = gr.JSON()
|
196 |
+
btn_find.click(find_faces, inputs=[query_img, db_path, threshold_find, model_find], outputs=[out_plot_find, out_json_find])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
with gr.TabItem("Analyze Face"):
|
199 |
+
img = gr.Image(label="Upload Image", type="numpy")
|
200 |
+
actions = gr.CheckboxGroup(["age", "gender", "race", "emotion"], value=["age", "gender", "race", "emotion"], label="Attributes")
|
201 |
+
btn_analyze = gr.Button("Analyze")
|
202 |
+
out_plot_analyze = gr.Plot()
|
203 |
+
out_json_analyze = gr.JSON()
|
204 |
+
btn_analyze.click(analyze_face, inputs=[img, actions], outputs=[out_plot_analyze, out_json_analyze])
|
205 |
+
|
206 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|