File size: 19,098 Bytes
ef07f3f
c57556d
ef07f3f
 
 
 
 
 
 
c57556d
ef07f3f
 
 
 
 
c57556d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef07f3f
 
 
c57556d
 
 
ef07f3f
c57556d
ef07f3f
 
 
 
 
 
 
 
c57556d
 
 
 
ef07f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# Install required packages
import os
import subprocess
import sys

# Check if running in a standard environment (not Colab/Jupyter)
# and install packages if needed
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
    try:
        # Try importing the required packages
        import gradio
        import cv2
        import numpy as np
        import matplotlib
        import PIL
        
        # Special handling for TensorFlow and DeepFace dependencies
        try:
            import tensorflow as tf
            tf_version = tf.__version__
            print(f"TensorFlow version: {tf_version}")
            
            # If TensorFlow version is >=2.16, we need to install tf-keras
            if tf_version >= "2.16.0":
                print("Installing tf-keras for compatibility with newer TensorFlow...")
                subprocess.check_call([sys.executable, "-m", "pip", "install", "tf-keras"])
                
            # Now try to import deepface
            import deepface
        except ImportError as e:
            print(f"Error importing dependencies: {str(e)}")
            print("Installing deepface with specific dependencies...")
            # First downgrade tensorflow to a compatible version if needed
            subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow<2.16.0"])
            # Then install deepface
            subprocess.check_call([sys.executable, "-m", "pip", "install", "deepface"])
            
    except ImportError:
        print("Installing required packages...")
        subprocess.check_call([sys.executable, "-m", "pip", "install",
                              "gradio", "opencv-python-headless", "numpy", "matplotlib", "pillow"])
        subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow<2.16.0"])  # Use older version
        subprocess.check_call([sys.executable, "-m", "pip", "install", "deepface"])

# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from PIL import Image
import tempfile
import pandas as pd
import shutil
import matplotlib.pyplot as plt

# Import DeepFace after ensuring dependencies are properly installed
from deepface import DeepFace

def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
    # Save uploaded images to temporary files
    temp_dir = tempfile.mkdtemp()
    img1_path = os.path.join(temp_dir, "image1.jpg")
    img2_path = os.path.join(temp_dir, "image2.jpg")

    # Convert to PIL Images and save
    if isinstance(img1, np.ndarray):
        Image.fromarray(img1).save(img1_path)
    else:
        img1.save(img1_path)

    if isinstance(img2, np.ndarray):
        Image.fromarray(img2).save(img2_path)
    else:
        img2.save(img2_path)

    # Perform face verification
    try:
        result = DeepFace.verify(
            img1_path=img1_path,
            img2_path=img2_path,
            model_name=model,
            distance_metric="cosine",
            threshold=threshold
        )

        # Create comparison visualization
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))

        # Display images
        img1_display = cv2.imread(img1_path)
        img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
        img2_display = cv2.imread(img2_path)
        img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)

        ax[0].imshow(img1_display)
        ax[0].set_title("Image 1")
        ax[0].axis("off")

        ax[1].imshow(img2_display)
        ax[1].set_title("Image 2")
        ax[1].axis("off")

        # Create result message
        verification_result = "βœ… FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
        confidence = round((1 - result["distance"]) * 100, 2)

        plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
                    fontsize=16, fontweight='bold',
                    color='green' if result["verified"] else 'red')

        plt.tight_layout()

        # Clean up temporary files
        os.remove(img1_path)
        os.remove(img2_path)
        os.rmdir(temp_dir)

        return fig, json.dumps(result, indent=2)

    except Exception as e:
        # Clean up temporary files
        if os.path.exists(img1_path):
            os.remove(img1_path)
        if os.path.exists(img2_path):
            os.remove(img2_path)
        if os.path.exists(temp_dir):
            os.rmdir(temp_dir)

        error_msg = f"Error: {str(e)}"
        if "No face detected" in str(e):
            error_msg = "No face detected in one or both images. Please try different images."

        return None, error_msg

def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
    # Create temp directory
    temp_dir = tempfile.mkdtemp()
    query_path = os.path.join(temp_dir, "query.jpg")

    # Save query image
    if isinstance(query_img, np.ndarray):
        Image.fromarray(query_img).save(query_path)
    else:
        query_img.save(query_path)

    # If db_folder is just a string, assume it's a folder path the user entered
    if isinstance(db_folder, str):
        db_path = db_folder
    else:
        # Handling for folder upload (creates a temp directory with the images)
        db_path = os.path.join(temp_dir, "db")
        os.makedirs(db_path, exist_ok=True)

        for i, file in enumerate(db_folder):
            file_ext = os.path.splitext(file.name)[1]
            shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))

    try:
        # Find matching faces
        dfs = DeepFace.find(
            img_path=query_path,
            db_path=db_path,
            model_name=model,
            distance_metric="cosine",
            threshold=threshold
        )

        if isinstance(dfs, list):
            # Handle case where multiple faces are found in query image
            if len(dfs) == 0:
                return None, "No matching faces found in the database."
            df = dfs[0]  # Take first face results
        else:
            df = dfs

        # Check if any matches were found
        if df.empty:
            return None, "No matching faces found in the database."

        # Sort by similarity (lowest distance first)
        df = df.sort_values(by=["distance"])

        # Create visualization for top matches (up to 4)
        num_matches = min(4, len(df))
        fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))

        # Display query image
        query_display = cv2.imread(query_path)
        query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
        axes[0].imshow(query_display)
        axes[0].set_title("Query Image")
        axes[0].axis("off")

        # Display matches
        for i in range(num_matches):
            match_path = df.iloc[i]["identity"]
            distance = df.iloc[i]["distance"]
            confidence = round((1 - distance) * 100, 2)

            match_img = cv2.imread(match_path)
            match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)

            axes[i+1].imshow(match_img)
            axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
            axes[i+1].axis("off")

        plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
        plt.tight_layout()

        # Format results for display
        results = df[["identity", "distance"]].copy()
        results["confidence"] = (1 - results["distance"]) * 100
        results["confidence"] = results["confidence"].round(2)
        results = results.rename(columns={"identity": "Image Path"})

        # Clean up temp files
        os.remove(query_path)
        # Don't remove temp DB folder if it came from user input
        if not isinstance(db_folder, str):
            shutil.rmtree(db_path)

        return fig, results.to_dict('records')

    except Exception as e:
        # Clean up temp files
        if os.path.exists(query_path):
            os.remove(query_path)

        error_msg = f"Error: {str(e)}"
        if "No face detected" in str(e):
            error_msg = "No face detected in the query image. Please try a different image."

        return None, error_msg

def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
    # Create temp directory and save image
    temp_dir = tempfile.mkdtemp()
    img_path = os.path.join(temp_dir, "analyze.jpg")

    if isinstance(img, np.ndarray):
        Image.fromarray(img).save(img_path)
    else:
        img.save(img_path)

    try:
        # Analyze facial attributes
        results = DeepFace.analyze(
            img_path=img_path,
            actions=actions,
            enforce_detection=True,
            detector_backend='opencv'
        )

        # Handle both single face and multiple faces results
        if isinstance(results, list):
            num_faces = len(results)
        else:
            num_faces = 1
            results = [results]

        # Create visualization
        fig = plt.figure(figsize=(14, 7))

        # Load the image for display
        img_display = cv2.imread(img_path)
        img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)

        # Main image display
        main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        main_ax.imshow(img_display)
        main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
        main_ax.axis('off')

        # Create a results summary for each face
        for i, face_result in enumerate(results):
            if i >= 4:  # Limit to 4 faces for display
                break

            # Get main results
            age = face_result.get('age', 'N/A')
            gender = face_result.get('dominant_gender', 'N/A')
            race = face_result.get('dominant_race', 'N/A')
            emotion = face_result.get('dominant_emotion', 'N/A')

            # Gender confidence
            gender_conf = 'N/A'
            if 'gender' in face_result and isinstance(face_result['gender'], dict):
                for g, conf in face_result['gender'].items():
                    if g.lower() == gender.lower():
                        gender_conf = f"{conf:.1f}%"
                        break

            # Race confidence
            race_conf = 'N/A'
            if 'race' in face_result and isinstance(face_result['race'], dict):
                for r, conf in face_result['race'].items():
                    if r.lower() == race.lower():
                        race_conf = f"{conf:.1f}%"
                        break

            # Emotion confidence
            emotion_conf = 'N/A'
            if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
                for e, conf in face_result['emotion'].items():
                    if e.lower() == emotion.lower():
                        emotion_conf = f"{conf:.1f}%"
                        break

            # Create subplot for this face's results
            ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))

            # Format text for subplot
            text = (
                f"Face #{i+1}\n\n"
                f"Age: {age}\n\n"
                f"Gender: {gender} ({gender_conf})\n\n"
                f"Race: {race} ({race_conf})\n\n"
                f"Emotion: {emotion} ({emotion_conf})"
            )

            ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
            ax.axis('off')

        plt.tight_layout()

        # Clean up temp files
        os.remove(img_path)
        os.rmdir(temp_dir)

        # Format results for display in JSON
        formatted_results = []
        for i, res in enumerate(results[:8]):  # Limit to 8 faces for JSON display
            face_data = {
                "face_number": i+1,
                "age": res.get("age", "N/A"),
                "gender": {
                    "dominant": res.get("dominant_gender", "N/A"),
                    "confidence": res.get("gender", {})
                },
                "race": {
                    "dominant": res.get("dominant_race", "N/A"),
                    "confidence": res.get("race", {})
                },
                "emotion": {
                    "dominant": res.get("dominant_emotion", "N/A"),
                    "confidence": res.get("emotion", {})
                }
            }
            formatted_results.append(face_data)

        return fig, formatted_results

    except Exception as e:
        # Clean up temp files
        if os.path.exists(img_path):
            os.remove(img_path)
        if os.path.exists(temp_dir):
            os.rmdir(temp_dir)

        error_msg = f"Error: {str(e)}"
        if "No face detected" in str(e):
            error_msg = "No face detected in the image. Please try a different image."

        return None, error_msg

# Create Gradio interface
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ” Complete Face Recognition Tool

    This tool provides three face recognition features:
    - **Verify Faces**: Compare two specific images to check if they contain the same person
    - **Find Faces**: Search for matching faces in a database/folder
    - **Analyze Face**: Determine age, gender, race, and emotion from a facial image
    """)

    with gr.Tabs():
        with gr.TabItem("Verify Faces"):
            with gr.Row():
                with gr.Column():
                    img1_input = gr.Image(label="First Image", type="pil")
                with gr.Column():
                    img2_input = gr.Image(label="Second Image", type="pil")

            with gr.Row():
                with gr.Column():
                    verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
                                           label="Similarity Threshold (lower = stricter matching)")
                with gr.Column():
                    verify_model = gr.Dropdown(
                        choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
                        value="VGG-Face",
                        label="Face Recognition Model"
                    )

            verify_button = gr.Button("Verify Faces", variant="primary")

            with gr.Row():
                verify_result_plot = gr.Plot(label="Verification Result")

            with gr.Row():
                verify_json = gr.JSON(label="Technical Details")

            # Set up the verification function
            verify_button.click(
                verify_faces,
                inputs=[img1_input, img2_input, verify_threshold, verify_model],
                outputs=[verify_result_plot, verify_json]
            )

            gr.Markdown("""
            ### πŸ“‹ How to use Face Verification:
            1. Upload two facial images
            2. Adjust the similarity threshold if needed
            3. Select a face recognition model
            4. Click "Verify Faces" button
            5. View the results below
            """)

        with gr.TabItem("Find Faces"):
            with gr.Row():
                query_img = gr.Image(label="Query Image (Face to find)", type="pil")

            with gr.Row():
                with gr.Column():
                    db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
                    db_files_input = gr.File(label="Or upload images for database", file_count="multiple")

            with gr.Row():
                with gr.Column():
                    find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
                                         label="Similarity Threshold (lower = stricter matching)")
                with gr.Column():
                    find_model = gr.Dropdown(
                        choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
                        value="VGG-Face",
                        label="Face Recognition Model"
                    )

            find_button = gr.Button("Find Matching Faces", variant="primary")

            with gr.Row():
                find_result_plot = gr.Plot(label="Search Results")

            with gr.Row():
                find_results_table = gr.JSON(label="Detailed Results")

            # Connect function to button
            find_button.click(
                find_faces,
                inputs=[query_img, db_path_input, find_threshold, find_model],
                outputs=[find_result_plot, find_results_table]
            )

            # Also connect with files input
            db_files_input.change(
                lambda x: "",  # Clear the text input when files are uploaded
                inputs=db_files_input,
                outputs=db_path_input
            )

            gr.Markdown("""
            ### πŸ“‹ How to use Face Finding:
            1. Upload a query image containing the face you want to find
            2. Either:
               - Enter the path to a folder containing images to search through, or
               - Upload multiple images to create a temporary database
            3. Adjust the similarity threshold if needed
            4. Select a face recognition model
            5. Click "Find Matching Faces" button
            6. View the results showing the most similar faces
            """)

        with gr.TabItem("Analyze Face"):
            with gr.Row():
                analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")

            with gr.Row():
                actions_checkboxes = gr.CheckboxGroup(
                    choices=["age", "gender", "race", "emotion"],
                    value=["age", "gender", "race", "emotion"],
                    label="Select Attributes to Analyze"
                )

            analyze_button = gr.Button("Analyze Face", variant="primary")

            with gr.Row():
                analyze_result_plot = gr.Plot(label="Analysis Results")

            with gr.Row():
                analyze_json = gr.JSON(label="Detailed Analysis")

            # Connect function to button
            analyze_button.click(
                analyze_face,
                inputs=[analyze_img, actions_checkboxes],
                outputs=[analyze_result_plot, analyze_json]
            )

            gr.Markdown("""
            ### πŸ“‹ How to use Facial Analysis:
            1. Upload an image containing one or more faces
            2. Select which attributes you want to analyze
            3. Click "Analyze Face" button
            4. View the visual results and detailed JSON data

            ### πŸ“Š Understanding the results:
            - The tool can detect multiple faces in a single image
            - For each face, it provides:
              - Estimated age
              - Predicted gender with confidence
              - Predicted race/ethnicity with confidence
              - Detected emotional expression with confidence
            - The JSON output provides detailed confidence scores for all categories
            """)

# Launch the app
demo.launch()