File size: 19,098 Bytes
ef07f3f c57556d ef07f3f c57556d ef07f3f c57556d ef07f3f c57556d ef07f3f c57556d ef07f3f c57556d ef07f3f 4386899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# Install required packages
import os
import subprocess
import sys
# Check if running in a standard environment (not Colab/Jupyter)
# and install packages if needed
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
try:
# Try importing the required packages
import gradio
import cv2
import numpy as np
import matplotlib
import PIL
# Special handling for TensorFlow and DeepFace dependencies
try:
import tensorflow as tf
tf_version = tf.__version__
print(f"TensorFlow version: {tf_version}")
# If TensorFlow version is >=2.16, we need to install tf-keras
if tf_version >= "2.16.0":
print("Installing tf-keras for compatibility with newer TensorFlow...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "tf-keras"])
# Now try to import deepface
import deepface
except ImportError as e:
print(f"Error importing dependencies: {str(e)}")
print("Installing deepface with specific dependencies...")
# First downgrade tensorflow to a compatible version if needed
subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow<2.16.0"])
# Then install deepface
subprocess.check_call([sys.executable, "-m", "pip", "install", "deepface"])
except ImportError:
print("Installing required packages...")
subprocess.check_call([sys.executable, "-m", "pip", "install",
"gradio", "opencv-python-headless", "numpy", "matplotlib", "pillow"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow<2.16.0"]) # Use older version
subprocess.check_call([sys.executable, "-m", "pip", "install", "deepface"])
# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from PIL import Image
import tempfile
import pandas as pd
import shutil
import matplotlib.pyplot as plt
# Import DeepFace after ensuring dependencies are properly installed
from deepface import DeepFace
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
# Save uploaded images to temporary files
temp_dir = tempfile.mkdtemp()
img1_path = os.path.join(temp_dir, "image1.jpg")
img2_path = os.path.join(temp_dir, "image2.jpg")
# Convert to PIL Images and save
if isinstance(img1, np.ndarray):
Image.fromarray(img1).save(img1_path)
else:
img1.save(img1_path)
if isinstance(img2, np.ndarray):
Image.fromarray(img2).save(img2_path)
else:
img2.save(img2_path)
# Perform face verification
try:
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
# Create comparison visualization
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
# Display images
img1_display = cv2.imread(img1_path)
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
img2_display = cv2.imread(img2_path)
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
ax[0].imshow(img1_display)
ax[0].set_title("Image 1")
ax[0].axis("off")
ax[1].imshow(img2_display)
ax[1].set_title("Image 2")
ax[1].axis("off")
# Create result message
verification_result = "β
FACE MATCHED" if result["verified"] else "β FACE NOT MATCHED"
confidence = round((1 - result["distance"]) * 100, 2)
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
fontsize=16, fontweight='bold',
color='green' if result["verified"] else 'red')
plt.tight_layout()
# Clean up temporary files
os.remove(img1_path)
os.remove(img2_path)
os.rmdir(temp_dir)
return fig, json.dumps(result, indent=2)
except Exception as e:
# Clean up temporary files
if os.path.exists(img1_path):
os.remove(img1_path)
if os.path.exists(img2_path):
os.remove(img2_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in one or both images. Please try different images."
return None, error_msg
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
# Create temp directory
temp_dir = tempfile.mkdtemp()
query_path = os.path.join(temp_dir, "query.jpg")
# Save query image
if isinstance(query_img, np.ndarray):
Image.fromarray(query_img).save(query_path)
else:
query_img.save(query_path)
# If db_folder is just a string, assume it's a folder path the user entered
if isinstance(db_folder, str):
db_path = db_folder
else:
# Handling for folder upload (creates a temp directory with the images)
db_path = os.path.join(temp_dir, "db")
os.makedirs(db_path, exist_ok=True)
for i, file in enumerate(db_folder):
file_ext = os.path.splitext(file.name)[1]
shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))
try:
# Find matching faces
dfs = DeepFace.find(
img_path=query_path,
db_path=db_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
if isinstance(dfs, list):
# Handle case where multiple faces are found in query image
if len(dfs) == 0:
return None, "No matching faces found in the database."
df = dfs[0] # Take first face results
else:
df = dfs
# Check if any matches were found
if df.empty:
return None, "No matching faces found in the database."
# Sort by similarity (lowest distance first)
df = df.sort_values(by=["distance"])
# Create visualization for top matches (up to 4)
num_matches = min(4, len(df))
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
# Display query image
query_display = cv2.imread(query_path)
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
axes[0].imshow(query_display)
axes[0].set_title("Query Image")
axes[0].axis("off")
# Display matches
for i in range(num_matches):
match_path = df.iloc[i]["identity"]
distance = df.iloc[i]["distance"]
confidence = round((1 - distance) * 100, 2)
match_img = cv2.imread(match_path)
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
axes[i+1].imshow(match_img)
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
axes[i+1].axis("off")
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
plt.tight_layout()
# Format results for display
results = df[["identity", "distance"]].copy()
results["confidence"] = (1 - results["distance"]) * 100
results["confidence"] = results["confidence"].round(2)
results = results.rename(columns={"identity": "Image Path"})
# Clean up temp files
os.remove(query_path)
# Don't remove temp DB folder if it came from user input
if not isinstance(db_folder, str):
shutil.rmtree(db_path)
return fig, results.to_dict('records')
except Exception as e:
# Clean up temp files
if os.path.exists(query_path):
os.remove(query_path)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the query image. Please try a different image."
return None, error_msg
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
# Create temp directory and save image
temp_dir = tempfile.mkdtemp()
img_path = os.path.join(temp_dir, "analyze.jpg")
if isinstance(img, np.ndarray):
Image.fromarray(img).save(img_path)
else:
img.save(img_path)
try:
# Analyze facial attributes
results = DeepFace.analyze(
img_path=img_path,
actions=actions,
enforce_detection=True,
detector_backend='opencv'
)
# Handle both single face and multiple faces results
if isinstance(results, list):
num_faces = len(results)
else:
num_faces = 1
results = [results]
# Create visualization
fig = plt.figure(figsize=(14, 7))
# Load the image for display
img_display = cv2.imread(img_path)
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
# Main image display
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
main_ax.imshow(img_display)
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
main_ax.axis('off')
# Create a results summary for each face
for i, face_result in enumerate(results):
if i >= 4: # Limit to 4 faces for display
break
# Get main results
age = face_result.get('age', 'N/A')
gender = face_result.get('dominant_gender', 'N/A')
race = face_result.get('dominant_race', 'N/A')
emotion = face_result.get('dominant_emotion', 'N/A')
# Gender confidence
gender_conf = 'N/A'
if 'gender' in face_result and isinstance(face_result['gender'], dict):
for g, conf in face_result['gender'].items():
if g.lower() == gender.lower():
gender_conf = f"{conf:.1f}%"
break
# Race confidence
race_conf = 'N/A'
if 'race' in face_result and isinstance(face_result['race'], dict):
for r, conf in face_result['race'].items():
if r.lower() == race.lower():
race_conf = f"{conf:.1f}%"
break
# Emotion confidence
emotion_conf = 'N/A'
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
for e, conf in face_result['emotion'].items():
if e.lower() == emotion.lower():
emotion_conf = f"{conf:.1f}%"
break
# Create subplot for this face's results
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
# Format text for subplot
text = (
f"Face #{i+1}\n\n"
f"Age: {age}\n\n"
f"Gender: {gender} ({gender_conf})\n\n"
f"Race: {race} ({race_conf})\n\n"
f"Emotion: {emotion} ({emotion_conf})"
)
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
ax.axis('off')
plt.tight_layout()
# Clean up temp files
os.remove(img_path)
os.rmdir(temp_dir)
# Format results for display in JSON
formatted_results = []
for i, res in enumerate(results[:8]): # Limit to 8 faces for JSON display
face_data = {
"face_number": i+1,
"age": res.get("age", "N/A"),
"gender": {
"dominant": res.get("dominant_gender", "N/A"),
"confidence": res.get("gender", {})
},
"race": {
"dominant": res.get("dominant_race", "N/A"),
"confidence": res.get("race", {})
},
"emotion": {
"dominant": res.get("dominant_emotion", "N/A"),
"confidence": res.get("emotion", {})
}
}
formatted_results.append(face_data)
return fig, formatted_results
except Exception as e:
# Clean up temp files
if os.path.exists(img_path):
os.remove(img_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the image. Please try a different image."
return None, error_msg
# Create Gradio interface
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Complete Face Recognition Tool
This tool provides three face recognition features:
- **Verify Faces**: Compare two specific images to check if they contain the same person
- **Find Faces**: Search for matching faces in a database/folder
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
""")
with gr.Tabs():
with gr.TabItem("Verify Faces"):
with gr.Row():
with gr.Column():
img1_input = gr.Image(label="First Image", type="pil")
with gr.Column():
img2_input = gr.Image(label="Second Image", type="pil")
with gr.Row():
with gr.Column():
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
with gr.Column():
verify_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
verify_button = gr.Button("Verify Faces", variant="primary")
with gr.Row():
verify_result_plot = gr.Plot(label="Verification Result")
with gr.Row():
verify_json = gr.JSON(label="Technical Details")
# Set up the verification function
verify_button.click(
verify_faces,
inputs=[img1_input, img2_input, verify_threshold, verify_model],
outputs=[verify_result_plot, verify_json]
)
gr.Markdown("""
### π How to use Face Verification:
1. Upload two facial images
2. Adjust the similarity threshold if needed
3. Select a face recognition model
4. Click "Verify Faces" button
5. View the results below
""")
with gr.TabItem("Find Faces"):
with gr.Row():
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
with gr.Row():
with gr.Column():
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
with gr.Row():
with gr.Column():
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
with gr.Column():
find_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
find_button = gr.Button("Find Matching Faces", variant="primary")
with gr.Row():
find_result_plot = gr.Plot(label="Search Results")
with gr.Row():
find_results_table = gr.JSON(label="Detailed Results")
# Connect function to button
find_button.click(
find_faces,
inputs=[query_img, db_path_input, find_threshold, find_model],
outputs=[find_result_plot, find_results_table]
)
# Also connect with files input
db_files_input.change(
lambda x: "", # Clear the text input when files are uploaded
inputs=db_files_input,
outputs=db_path_input
)
gr.Markdown("""
### π How to use Face Finding:
1. Upload a query image containing the face you want to find
2. Either:
- Enter the path to a folder containing images to search through, or
- Upload multiple images to create a temporary database
3. Adjust the similarity threshold if needed
4. Select a face recognition model
5. Click "Find Matching Faces" button
6. View the results showing the most similar faces
""")
with gr.TabItem("Analyze Face"):
with gr.Row():
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
with gr.Row():
actions_checkboxes = gr.CheckboxGroup(
choices=["age", "gender", "race", "emotion"],
value=["age", "gender", "race", "emotion"],
label="Select Attributes to Analyze"
)
analyze_button = gr.Button("Analyze Face", variant="primary")
with gr.Row():
analyze_result_plot = gr.Plot(label="Analysis Results")
with gr.Row():
analyze_json = gr.JSON(label="Detailed Analysis")
# Connect function to button
analyze_button.click(
analyze_face,
inputs=[analyze_img, actions_checkboxes],
outputs=[analyze_result_plot, analyze_json]
)
gr.Markdown("""
### π How to use Facial Analysis:
1. Upload an image containing one or more faces
2. Select which attributes you want to analyze
3. Click "Analyze Face" button
4. View the visual results and detailed JSON data
### π Understanding the results:
- The tool can detect multiple faces in a single image
- For each face, it provides:
- Estimated age
- Predicted gender with confidence
- Predicted race/ethnicity with confidence
- Detected emotional expression with confidence
- The JSON output provides detailed confidence scores for all categories
""")
# Launch the app
demo.launch() |