File size: 8,435 Bytes
94312f3 ef07f3f 0e514e1 ef07f3f 9a2407d ef07f3f 8e8e221 ef07f3f 15cef53 8e8e221 9a2407d 15cef53 8e8e221 ef07f3f 8e8e221 ef07f3f 8e8e221 ef07f3f 8e8e221 15cef53 ef07f3f 8e8e221 9a2407d 8e8e221 0e514e1 8e8e221 9a2407d ef07f3f 9a2407d ef07f3f 8e8e221 ef07f3f 15cef53 8e8e221 9a2407d 15cef53 8e8e221 c465d82 8e8e221 15cef53 c465d82 15cef53 8e8e221 c465d82 8e8e221 9a2407d c465d82 9a2407d 8e8e221 15cef53 8e8e221 2b42f4f 8e8e221 c465d82 8e8e221 9a2407d ef07f3f 9a2407d 15cef53 9a2407d ef07f3f 8e8e221 ef07f3f 15cef53 8e8e221 9a2407d 15cef53 9a2407d ef07f3f 9a2407d ef07f3f 8e8e221 15cef53 9a2407d 0e514e1 8e8e221 9a2407d 8e8e221 9a2407d 8e8e221 9a2407d 8e8e221 9a2407d 8e8e221 9a2407d 0e514e1 ef07f3f 9a2407d 15cef53 9a2407d ef07f3f 8e8e221 0e514e1 ef07f3f 9a2407d ef07f3f 8e8e221 0e514e1 9a2407d 8e8e221 4c6ee84 8e8e221 9a2407d 8e8e221 c465d82 8e8e221 0e514e1 9a2407d 8e8e221 c465d82 8e8e221 9a2407d 8e8e221 9a2407d 8e8e221 9a2407d 8e8e221 0e514e1 9a2407d 8e8e221 9a2407d ef07f3f 9a2407d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# First install required dependencies
import subprocess
import sys
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
# List of required packages with specific versions
required_packages = [
("opencv-python-headless", "4.7.0.72"),
("deepface", "0.0.79"),
("tensorflow", "2.10.0"),
("gradio", "3.50.2"),
("matplotlib", "3.7.1"),
("pandas", "2.0.3"),
("Pillow", "10.0.1")
]
# Install all required packages
for pkg, ver in required_packages:
try:
install_package(pkg, ver)
except Exception as e:
print(f"Critical error installing {pkg}: {str(e)}")
sys.exit(1)
# Now import the rest of the modules
import gradio as gr
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import os
import shutil
import pandas as pd
def verify_faces(img1, img2, threshold=0.6, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
try:
# Save images
img1_path = os.path.join(temp_dir, "img1.jpg")
img2_path = os.path.join(temp_dir, "img2.jpg")
Image.fromarray(img1).save(img1_path) if isinstance(img1, np.ndarray) else img1.save(img1_path)
Image.fromarray(img2).save(img2_path) if isinstance(img2, np.ndarray) else img2.save(img2_path)
# Verify faces
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model,
distance_metric="cosine"
)
# Create visualization
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
for i, path in enumerate([img1_path, img2_path]):
img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
ax[i].imshow(img)
ax[i].axis('off')
ax[i].set_title(f"Image {i+1}")
verified = result['distance'] <= threshold
plt.suptitle(f"{'β
MATCH' if verified else 'β NO MATCH'}\nDistance: {result['distance']:.4f}")
return fig, result
except Exception as e:
return None, {"error": str(e)}
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
def find_faces(query_img, db_input, threshold=0.6, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
try:
# Save query image
query_path = os.path.join(temp_dir, "query.jpg")
Image.fromarray(query_img).save(query_path) if isinstance(query_img, np.ndarray) else query_img.save(query_path)
# Handle database input
if isinstance(db_input, str) and os.path.isdir(db_input):
db_path = db_input
else:
db_path = os.path.join(temp_dir, "db")
os.makedirs(db_path, exist_ok=True)
if db_input:
for i, file in enumerate(db_input):
ext = os.path.splitext(file.name)[1]
shutil.copy(file.name, os.path.join(db_path, f"img_{i}{ext}"))
# Find faces
try:
dfs = DeepFace.find(
img_path=query_path,
db_path=db_path,
model_name=model,
distance_metric="cosine",
silent=True
)
except Exception as e:
return None, {"error": f"Face detection failed: {str(e)}"}
df = dfs[0] if isinstance(dfs, list) else dfs
if df.empty:
return None, {"error": "No matches found"}
df = df[df['distance'] <= threshold].sort_values('distance')
# Create visualization
num_matches = min(4, len(df))
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
# Show query image
query_img = cv2.cvtColor(cv2.imread(query_path), cv2.COLOR_BGR2RGB)
axes[0].imshow(query_img)
axes[0].set_title("Query")
axes[0].axis('off')
# Show matches
for i in range(num_matches):
if i >= len(df): break
match_path = df.iloc[i]['identity']
if not os.path.exists(match_path):
continue
try:
match_img = cv2.cvtColor(cv2.imread(match_path), cv2.COLOR_BGR2RGB)
axes[i+1].imshow(match_img)
axes[i+1].set_title(f"Match {i+1}\n{df.iloc[i]['distance']:.4f}")
axes[i+1].axis('off')
except:
continue
return fig, df[['identity', 'distance']].to_dict('records')
except Exception as e:
return None, {"error": str(e)}
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
def analyze_face(img, actions=['age', 'gender', 'emotion']):
temp_dir = tempfile.mkdtemp()
try:
# Save image
img_path = os.path.join(temp_dir, "analyze.jpg")
Image.fromarray(img).save(img_path) if isinstance(img, np.ndarray) else img.save(img_path)
# Analyze face
results = DeepFace.analyze(
img_path=img_path,
actions=actions,
enforce_detection=False,
detector_backend='opencv'
)
# Process results
results = results if isinstance(results, list) else [results]
fig = plt.figure(figsize=(10, 5))
# Show image
plt.subplot(121)
img_display = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
plt.imshow(img_display)
plt.title("Input Image")
plt.axis('off')
# Show attributes
plt.subplot(122)
attributes = {k: v for res in results for k, v in res.items() if k != 'region'}
plt.barh(list(attributes.keys()), list(attributes.values()))
plt.title("Analysis Results")
plt.tight_layout()
return fig, results
except Exception as e:
return None, {"error": str(e)}
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
# Gradio Interface
with gr.Blocks(title="Face Recognition Toolkit", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§π» Face Recognition Toolkit")
with gr.Tabs():
with gr.Tab("Verify Faces"):
with gr.Row():
img1 = gr.Image(label="First Image", type="pil")
img2 = gr.Image(label="Second Image", type="pil")
verify_threshold = gr.Slider(0.1, 1.0, 0.6, label="Match Threshold")
verify_model = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace"], value="VGG-Face")
verify_btn = gr.Button("Verify Faces")
verify_output = gr.Plot()
verify_json = gr.JSON()
verify_btn.click(
verify_faces,
[img1, img2, verify_threshold, verify_model],
[verify_output, verify_json]
)
with gr.Tab("Find Faces"):
query_img = gr.Image(label="Query Image", type="pil")
db_input = gr.Textbox("", label="Database Path (optional)")
db_files = gr.File(file_count="multiple", label="Upload Database Images")
find_threshold = gr.Slider(0.1, 1.0, 0.6, label="Similarity Threshold")
find_model = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace"], value="VGG-Face")
find_btn = gr.Button("Find Matches")
find_output = gr.Plot()
find_json = gr.JSON()
find_btn.click(
find_faces,
[query_img, db_files, find_threshold, find_model],
[find_output, find_json]
)
with gr.Tab("Analyze Face"):
analyze_img = gr.Image(label="Input Image", type="pil")
analyze_actions = gr.CheckboxGroup(
["age", "gender", "emotion", "race"],
value=["age", "gender", "emotion"],
label="Analysis Features"
)
analyze_btn = gr.Button("Analyze")
analyze_output = gr.Plot()
analyze_json = gr.JSON()
analyze_btn.click(
analyze_face,
[analyze_img, analyze_actions],
[analyze_output, analyze_json]
)
demo.launch() |